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This paper presents approximation theory for the linear-quadratic-

Gaussian optimal control problem for flexible structures whose distributed

models have bounded input and output operators. The main purpose of the

theory is to guide the design of finite din ensional compensators that approxi-into an optimal linear-
mate closely the optimal compensator separates

quadratic control problem lies in the solution to an infinite dimensional

Riccati operator equation. The approximation scheme in the paper approximates

the infinite dimensional LQG problem with a sequence of finite dimensional LQG

problems defined for a sequence of finite dimensional, usually finite element

or modal, approximations of the distrib_Ited model of the structure. Two

Riccati matrix equations determine the sol lt ion to each approximating problem.

. dimensional equations for numerical approximation are de-
The finite . _ _ c ....... ertinc_ matrix control and estimator gains

n formulas rut _,_ _, tveloped, includi g ..... 11 .......... r on of gains based on di -
to their functional representatlon co a_,w ....r _is v . .

a roximation. Convergence of the approximating control and

ferent orderI of PF _ the corresponding finite dimensional compensat°Is i_
estimator g_s ::_e:_ence and stability of the closed-loop systems p[_:

stualea. _i_l ' _.,___^._i _omnensators are discussed, the c?nver_=-_
with the finite a_m=n_ ...... r - _ =o1.t_ ns of the finite dimenslonal

theory is based on the convergence of L,,= ...... o _ _ .
the solutions of the infinite dimensional Kiccatl equa-

Riccati equations to . ...... _^_ _ r atin_ ri id body, and a

tions. A numerical example with a tiexID]_ u==,-, _ _ot _ g

lumped mass is given.
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1. Introduction

Recent years have seen increasing research in active control of flexible

structures. The primary motivation for this research is control of large

flexible aerospace structures, which are becoming larger and more flexible at

the same time that their performance requirements are becoming more stringent.

For example, in tracking and other applications, satellites with large anten-

nae, solar collectors and other flexible components must perform fast slew

maneuvers while maintaining tight control ever the vibrations of their flexi-

ble elements. Both of these conflicting objectives can be achieved only with

a sophisticated controller. There are applications also to control of robotic

manipulators with flexible links, and poss:_bly to stabilization of large civil

engineering structures such as long bridge_ and tall buildings.

The first question that must be answered when designing a controller for

a flexible structure is whether a finite Cimensional model is sufficient as a

basis for a controller that will produce the required performance, or is a

distributed model necessarY? While some :_tructures can be modeled well by a

fixed number of dominant modes, there are structures whose flexible character

can be captured sufficiently for precise _ntrol only by a distributed model.

Still others -- perhaps most of the aerospace structures of the future -- can

be modeled sufficiently for control purposes by some finite dimensional

approximation, but an adequate approximation may be impossible to determine

before design of the controller, or compensator. This paper deals with struc-

tures that are flexible enough to require a distributed model in the design of

an optimal LQG compensator.



The llnear-quadratlc-gaussian optimal control problem for distributed, or

infinite dimensional, systems is a generalization to Hilbert space of the now

classical LQG problem for finite dimensional systems. The solution to the

infinite dimensional problem yields an infinite dimensional state-estimator-

based compensator, which is optimal in the context of this paper. By a

separation principle [BI, CA], the problem reduces to a deterministic linear-

quadratic optimal control problem and an optimal estimation, or filtering,

problem with gausslan white noise. In infinite dimensions, the control system

dynamics are represented by a semigroup of bounded linear operators instead of

the matrix exponential operators in finite dimensions, and the plant noise

process may be an infinite dimensional random process. The solutions to both

the control and filtering problems involve Riccati operator equations, which

are generalizations of the Riccatl matrix equations in the finite dimensional

case. Current results on the infinite dimensional LQG problem are most com-

plete for problems where the input and measurement operators are bounded, as

this paper requires throughout. This boundedness also permits the strongest

approximation results here. For related control problems with unbounded input

and measurement, see [C3, C5, LI, L2].

Our primary objective in this paper is to approximate the optimal infin-

ite dimensional LQG compensator for a distributed model of a flexible struc-

ture with finite dimensional compensators based on approximations to the

structure, and to have these finite dimensional compensators produce near

optimal performance of the closed-loop system. We discuss how the gains that

determine the finite dimensional compensators converge to the gains that

determine the infinite dimensional compensator, and we examine the sense in

2



which the finite dimensional compensators converge to the infinite dimensional

compensator. With this analysis, we can predict the performance of the

closed-loop system consisting of the distributed plant and a finite dimen-

sional compensator that approximates the infinite dimensional compensator.

Our design philosophy is to let the convergence of the finite dimensional

compensators indicate the order of the compensator that is required to produce

the desired performance of the structure. The two main factors that govern

rate of convergence are the desired performance (e.g., fast response) and the

structural damping. We should note that any one of our compensators whose

order is not sufficient to approximate the infinite dimensional compensator

closely will not in general be the optimal compensator of that fixed order;

i.e., the optimal fixed-order compensator that would be constructed with the

design philosophy in [B7, BS]. But as we increase the order of approximation

to obtain convergence, our finite dimensional compensators become essentially

identical to the compensator that is optimal over compensators of all orders.

An important question, of course, is how large a finite dimensional com-

pensator we must use to approximate the infinite dimensional compensator. In

[G6, G7, G$, MI], we have found that our complete design strategy yields com-

pensators of reasonable size for distributed models of complex space struc-

tures. This strategy in general requires two steps to obtain an implementable

compensator that is essentially identical to the optima/ infinite dimensional

compensator: the first step determines the optimal compensator by letting the

finite dimensional compensators converge to it; the second step reduces, if

possible, the order of a large (converged) a_proximation to the optimal com-

pensator. The first step, which is the one involving control theory and



approximation theory for distributed systems, is the subject of this paper.

For the second step, a simple modal truncation of the large compensator some-

times is sufficient, but there are more sophisticated methods in finite dimen-

sional control theory for order reduction. For example [G8, MI], we have

found balanced realizations [M2] to work well for reducing large compensators.

The approximation theory in this paper follows from the application of

approximation results in [B6, G3, G4] to a sequence of finite dimensional

optimal LQG problems based on a Ritz-Galerkin approximation of the flexible

structure. For the optimal linear-quadratic control problem, the approxima-

tion theory here is a substantial improvement over that in [GI] because here

we allow rigid-body modes, more general structural damping (including damping

in the boundary), and much more general finite element approximations. These

generalizations are necessary to accommodate common features of complex space

structures and the most useful finite element schemes. For example, we write

the equations for constructing the approximating control and estimator gains

and finite dimensional compensators in terms of matrices that are built

directly from typical mass, stiffness and damping matrices for flexible struc-

tures, along wlth actuator influence matrices and measurement matrices.

For the estimator problem, this paper presents the first rigorous approx-

imation theory. (We have used less complete versions of the results in previ-

ous research [G6, GT, G8, M_l].) As in the finite dimensional case, the infin-

ite dimensional optimal estimation problem is the dual of the infinite dimen-

sional optimal control problem, and the solutions to both problems have the

same structure. Because we exploit this duality to obtain the approximation

theory for the estimation problem from the approximation theory for the



optimal control problem, the analysis in this paper is almost entirely deter-

ministic. Wediscuss the stochastic interr:retation of the estimation problem

and the approximating state estimators briefly, but we are concerned mainly

with deterministic questions about the structure and convergence of approxima-

tions to an infinite dimensional compensator and the performance -- especially

stability -- of the closed-loop systems produced by the approximating compen-

sator s.

Next, an outline of the paper should aelp. The paper has two main parts,

which correspond roughly to the separation of the optimal LQG problem into an

optimal linear-quadratic regulator proble_ and an optimal state estimation

problem. The first half, Sections 2 through 6, deal with the control system

and the optimal regulator problem. Sections 7 through 10 treat the state

estimator and the compensator that is formed by applying the control law of

the first half of the paper to the output of the estimator.

Section 2 defines the abstract model of a flexible structure and the

energy spaces to be used throughout the paper. We assume a finite number of

actuators, since this is the case in all applications, and we assume that the

actuator influence operator is bounded. Section 2 also establishes certain

mathematical properties of the open-loop system that are useful in control and

approximation. To our knowledge, the exl_,onential stability theorem in Section

2.3 is a new result, and we find it interesting that such a simple Lyapunov

functional accommodates such a general damping model.

Section 3 discusses the linear-q ua_atic optimal control problem for the

distributed model of the structure and establishes some estimates involving
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bounds on solutions to infinite dimensional Ricoati equations and open-loop

and closed-loop decay rates. We need these estimates for the subsequent

approximation theory. To get the approximation theory for the estimation

problem, we have to give certain results on the control problem in a more gen-

eral form than would be necessary were we interested only in the control prob-

lem for flexible structures. Therefore, in Section 3, as in Sections S and 7,

we first give some generic results applicable to the LQG problem for a variety

of distributed systems and then apply the generic results to the control of

flexible structures.

Because we assume a finite number of actuators and a bounded input opera-

tor, the optimal feedback control law consists of a finite number of bounded

linear functionals on the state space, which is a Hilbert space. This means

that that the feedback law can be represented in terms of a finite number of

vectors, which we call functional control gains, whose inner products with the

general_zed displacement and velocity vectors define the control law. For any

flnite-rank, bounded linear feedback law for a control system on a Hilbert

space, the existence of such gains is obvious and well known. A functional

control gain for a flexible structure will have one or more distributed com-

ponents, or kernels, corresponding to each distributed component of the struc-

ture and scalar components corresponding to each rigid component of the struc-

ture.

We introduce the functional control gains at the end of Section 3, and we

introduce analogous functional estimator gains in Section 7. The functional

gains play a Prominent roll in our analysis. They give a concrete representa-

tion of the infinite dimensional compensator and provide a criterion for con-

6



vergence of the approximating finite dimensional compensators.

Wedevelop the approximation schemefor the control problem in Section 4.

The idea is to solve a finite dimensional llnear-quadratic regulator problem

for each of a sequence of Ritz-Galerkin approximations to the structure. We

develop the approximation of the structure i_ Section 4.1 and prove conver-

gence of the approximating open-loop systems The approximation scheme

includes most finite element approximations of flexible structures. For con-

vergence, we use the Trotter-Kato semigroup approximation theorem, which was

used in optimal open-loop control of hereditary systems in [BS] and has been

used in optimal feedback control of heredita,Tg, hyperbolic and parabolic sys-

tems in [B6, G1, G3] and other papers. The t;sual way to invoke Trotter-Kato

is to prove that the resolvents of the appro_:imatlng semigroup generators con-

verge strongly. To prove this, we introduce an inner product that involves

both the strain-energy inner product and the damping functional, and show that

the resolvent of each finite dimensional semlgroup generator is the projec-

tion, with respect to this special inner product, of the resolvent of the ori-

ginal semigroup generator onto the approximation subspace. The idea works as

well for the adJolnts of the resolvents, and when the open-loop semigroup gen-

erator has compact resolvent, it follows from our projection that the approxi-

mating resolvent operators converge in norm.

In Section 4.2, we define the sequence of finite dimensional optimal con-

trol problems, whose solutions approximate th,_,,solution to the infinite dimen-

sional problem of Section 3. The solution to each finite dimensional problem

is based on the solution to a Riccati matrix c_quatlon, and we give formulas

for using the solution to the Riccati matrix equation to compute approxima-

7



tions to the functional control gains as linear combinations of the basis vec-

tor s.

Section $.1 summarizes some generic convergence results from [B6, G3, CA]

on approximation of solutions to infinite dimensional Riccati equations. Sec-

tion 5.2 applies these generic results to obtain sufficient conditions for

convergence -- and nonconvergence -- of the solutions of the approximating

optimal control problems in Section 4.2. A main sufficient condition for con-

vergence is that the structure have damping, however small, that makes all

elastic vibrations of the open-loop system exponentially stable. This is a

necessary condition if the state weighting operator in the control problem is

coercive.

In Section 6, we present an example in which the structure consists of an

Euler-Bernoulli beam attached on one end to a rotating rigid hub and on the

other end to a lumped mass. We emphasize the fact that we do not solve, or

even write down, the coupled partial and ordinary differential equations of

motion. For both the definition and numerical solution of the problem, only

the kinetic and strain energy functionals and a dissipation functional for the

damping are required. We show the approximating functional control gains

obtained by using a standard finite element approximation of the beam, and we

discuss the effect on convergence of structural damping and of the ratio of

state weighting to control weighting in the performance index. As suggested

by a theorem in Section 5, the functional gains do not converge when no struc-

tural damping is modeled.

In Section 7, we begin the theory for closing the loop on the control

system. We assume a finite number of bounded linear measurements and

8



construct the optimal state estimator, which is infinite dimensional in gen-

eral. The gains for this estimator are obtained from the solution to an

infinite dimensional Riccati equation that has the sameform as the infinite

dimensional Riccatl equation in the control problem. Wecall these gains

functional estimator gains because they are vectors in the state space.

Since the approximation issues that this paper treats are fundamentally

deterministic, wemake the paper self contained by defining the infinite

dimensional estimator as an observer, although the only justification for cal-

ling this estimator and the corresponding compensator optimal is their

interpretation in the context of stochastic estimation and control. Wedis-

cuss the stochastic interpretation but do _ot use it. Wesay estimator and

observer interchangeably to emphasize the deterministic definition of the

estimator here.

With the optimal control law of Section 3 and the optimal estimator of

Section 7, we construct the optimal compensator, which also is infinite dimen-

sional in general. The transfer function of this compensator is irrational,

but it is still an m(number of actuators) p(number of sensors) matrix func-

tion of a complex variable, as in finite dimensional control theory. The

optimal closed-loop system consists of the distributed model of the structure

controlled by the optimal compensator.

Approximation of the optimal compenss tot is based on approximating the

infinite dimensional estimator with the sequence of finite dimensional estima-

tors defined in Section 8.1. The gains for the approximating estimators are

given in terms of the solutions to finite dimensional Riccatl equations that

approximate the infinite dimensional Riccati equation in Section 7. Although



defined as observers, these finite dimensional estimators can be interpreted

as Kalman filters, as shown in Section 8.2. In Section 8.3, we give formulas

for finite dimensional functional estimator gains that approximate the func-

tional estimator gains of Section 7. These approximating estimator gains

indicate how closely the finite dimensional estimators approximate the infin-

ite dimensional estimator. In Section 8.4, we apply the Riccati equation

approximation theory of Section 5 to describe the convergence of the finite

dimensional estimators.

Most of the results in Section S are analogous to results for the control

problem and follow from the same basic approximation theory, but certain

differences require careful analysis. There is an important difference in the

way that the Riccati matrices to be computed are defined in terms of the fin-

ite dimensional Riccati operators. Indeed, the Riccati matrix equations to be

solved numerically might seem incorrect at first. To demonstrate that the

finite dimensional estimators that we define in Section 8.1 are natural

approximations to the optimal infinite dimensional estimator, we show in Sec-

tion 8.2 that each finite dimensional estimator is a Kalman filter for the

corresponding finite element approximation of the flexible structure. The

brief discussion in Section 8.2 is the only place in the paper where stochas-

tic estimation theory is necessary, and none of the analysis in the rest of

the paper depends on this discussion.

In Section 9.1, we apply the nth control law of Section 4 to the output

of the nth estimator to form the nth compensator. (The order of approximation

is n.) The nth closed-loop system consists of the distributed model of the

structure controlled by the nth compensator. Since each finite dimensional

lO



estimator is realizable, the nth compensator and the nth closed-loop system

are realizable. In Section 9.2, we discus_ how the sequence of realizable

closed-loop systems approximates the optimal closed-loop system. Probably the

most important question here is whether exponential stability of the optimal

closed-loop system implies exponential stability of the nth closed-loop system

for n sufficiently large. We have been ab_ie to prove this only when the

approximation basis vectors are the natur_ modes of undamped free vibration

and these modes are not coupled by structu_ _al damping. That this stability

result can be generalized is suggested by _he results in Section 9.3, which

describe how the transfer functions of the finite dimensional compensators

approximate the transfer function of the optimal compensator.

In Section i0, we complete the compensator design for the example in Sec-

tion 6. Assuming that white noise corrupts the single measurement and that

distributed white noise disturbs the structure, we compute the gains for the

finite dimensional estimators and show th__ functional estimator gains. As in

the control problem, the functional gains do not converge when no damping is

modeled. We apply the control laws computed in Section 6 to the output of the

estimators in Section i0 to construct the finite dimensional compensators, and

we show the frequency response of these _,mpensators. As predicted by Section

9.3, the frequency response of the nth conpensator converges to the frequency

response of the optimal infinite dimensional compensator as n increases. In

Section 10.3, we discuss the structure and dimension of the finite dimensional

compensator that should be implemented.

We conclude in Section 11 by discussing where the approximation theory

presented in this paper is most complete and what further results would be

most important.
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2. The Control System

We consider the system

x'(t) + Dox(t ) + Aox(t) = Bou(t), t > O,

(2._)

where x(t) is in a real Hilbert space H and u(t) is in Rm for some finite m.

The linear stiffness operator A0 is densely defined and selfadJoint with com-

pact resolvent and at most a finite number of negative eigenvalues. We will

postpone discussion of the damping operator DO momentarily, except to say that

it is symmetric and nonnegative. The input operator B0 is a linear operator

from Rm to H, hence bounded.

By__, we__.q__3._ the e_zenvectors Cj 9_ the _

(2.2)

From our hypotheses on AO, we know that these elgenvalues form an infinitely

increasing sequence of real numbers, of which all but a finite number are

positive. Also, the corresponding eigenvectors are complete in H and satisfy

<_i' _J>H = <Ao_i' _J>H = O, I _ J.

(2.3)

(These properties of the elgenvalue problem (2.2) are standard. See, for

example, [B1], [KI].) For kj > 0, _j = _ is a t__ f__.

12



Remark 2.1. Our analysis includes the system

Mox(t) + Dox(t) + Aox(t) = Bou(t), t > O,
(2.1 ° )

where the mass operator _ is a selfadJoint, bounded and coercive linear

operator on a real Hilbert space HO. The operators AO, B0 and DO in (2.1')

have the same properties with respect to H0 that the corresponding operators

in (2.1) have with respect to H. To include (2.1') in our analysis, we need

only take H to be H0 with the norm-equival,_nt inner product <','>H =

• ">Ho MO MoIAo<MO , , and multiply (2.1') on the left by i. In H, the operator

is selfadjoint with compact resolvent, and _ID 0 is symmetric and nonnegative.

With no loss of generality then, we will refer henceforth only to (2.1) and

assume that the H-inner product accounts for the the mass distribution. [3

2.1 The Energy Spaces and the First-order Form of the System

Th___eeElastic-S r__Energv SpaceV and Tota]_-Energy Space E

We choose a bounded, selfadjoint linear operator _ on H such that AO =

A0 + A1 is coercive; i.e., there exists p > 0 for which

<_oX,X> H > p[ix[12H , x e T'_(A_o) = D(Ao).
(2.4)

Since A0 is bounded from below, there will be infinitely many such Al's.

In applications like our example in Section 6, it is natural to select for

an operator whose null space is the orthog¢_nal complement (in H) of the eigen-

space of A0 corresponding to nonpositlve e_genvalues. Obviously, any _ that

makes _0 coercive must be positive definite on the nonpositive eigenspace of

Ao

13



With A1 chosen, we define the Hilbert space V to be the completion of

D(AO) with respect to the inner product <Vl,V2>V = <AoVl,V2> H, vI and

_01 ..112 _12v2v2 8 D(Ao). Note that V = D( /2) and <Vl,V2> V = _A0 V1, >H" (Since A1

is a bounded operator on H, different choices of A1 yield V's with equivalent

norms, thus containing the same elements).

In the usual way, we will use the imbedding

VCH = H' C V',

where the injections from V into H and from H into V' are continuous with

dense ranges. We denote by A V the Riesz map from V onto its dual V'; i.e.,

<V,Vl> V = (AWl)V, Vl,V 8 V.

Then A0 is the restriction of A v to D(A O) in the sense that

(2.5)

(Avvl)v = <V,[ovl> H, v1 e D(Ao), v _ V.
(2.6)

Now we define the total _ space E = V x H, noting that when A0 is

2
coercive and x(t) is the solution to (2.1), then l[(x(t),x(t))[[ E is twice the

total energy (kinetic plus potential) in the system. We want to write (2.1)

as a first-order evolution equation on E. To to this, we must determine the

appropriate semigroup generator for the open-loop system. We will derive this

generator by constructing its inverse explicitly, and then we will try to con-

vince the reader that we do have the appropriate open-loop semigroup genera-

tor. The approach seems mathematically efficient, and we will need the

inverse of the generator for the approximation scheme. First, we must state

our precise hypotheses on damping and discuss its representation.

14



The Damping F_ and Operator

Actually, we do not require an operator DO defined from some subset of H

into H. Rather, we ass_e only that there exists a damping functional

do(Vl,V2): V )_ V--_R

(2.7)

such that do is bilinear, symmetric, contintx)us (on V X V) and nonnegative.

If we have a symmetric, nonnegative d_ping operator DO defined on D(A O)

such that DO is bounded relative to AO, then <DoVl,V2> H defines a bilinear,

symmetric, bounded, nonnegative functional on a dense subset of V X V. In

this case, the unique extension of this functional to V X V is do. (That DO

being Ao-bounded implies continuity of <Do',_> H with respect to the V-norm

follows from [KI, Theorem 4.12, p. 292] .)

Under our hypotheses on do, there is a unique bounded linear operator A D
t

from V into V such that

do(v,v I) = (ADVl)V, Vl,V _ V.

(2.8)

The operator (AVIAD) is then a bounded linear operator from V to V, and

(AVIAD) is selfadjoint (on V) because dO is .'_ymmetric. Also

do(V'V I) = <v,AvlADvI>V = <AvIADv,VI>v, Vl,V e V.
(2.9)

Remark 2.2_. We chose to begin our description of the control system model

with (2.1) because its form is familiar in the context of flexible structures.

The stiffness operator AO, for example, is the infinite dimensional analogue

of the stiffness matrix in finite dimensional structural analysis. In appli-

cations like the example in Section 6, though it is often easier to begin

15



with a strain-energy functional from which the oorrect strain-energy inner

product for V is obvious. The stiffness operator is defined then in terms of

the Riesz mapfor V (see [SS] for this approach), rather than V being defined

in terms of the stiffness operator; specifically, _0 is defined by (2.6) with

D(A%)= AvIH. Either way, the relationship between A0 and V is the same. But

the only thing that needs to be computedin applications is the V-inner pro-

duct; an explicit _ need not be written down. [3

The_ Generator

We define _-I 8 L(E,E) by

(2.10)

This operator is clearly one-to-one, and its range is dense, since V is dense

in H and D(A O) is dense in V. Now, we take

=
" (2.il)

Direct calculation of the inner product shows

<_-I v v >E -do(h' h)
h ' h = ' (2.12)

so that _ is dissipative with dense domain. Also, since D(_ -I) = E, _ is max-

imal dissipative by [GI, Theorem 2.1]. Therefore, _ generates a C0-

contraction semigroup on E.

Finally, the open-loop semigroup generator is
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[00]0AA = A + A1

where A1 is the bounded linear operator discussed above.
With

(2.13)

[o]e L(Rm, E),
B = B0

the first-order form of (2.1) is

(2.14)

z(t) = Az(t) + Bu(t), t>O

where z = (x,x) e E.

(2.15)

To see that A is indeed the appropriate open-loop semigroup generator,

suppose that A0 is coercive (so that A1 = 0) and that we have a symmetric,

nonnegative Ao-bounded damping operator D0. Then the appropriate generator

should be a maximal dissipative extension of the operator

OA = _D O ,
= D(A O) )aD(A 0).

(2.16)

0

It is shown in [GI, Section 2] that A has a unique maximal dissipative exten-

0

sion, and it can be shown easily that the A defined above is an extension of A

after noting that, in the present case,

(AvIAD)ID(AO ) = A(_IDo.
(2.17)

We should note that Showalter [$3, Chapter VI] elegantly derives a

semigroup generator for a class of second-or'der systems that includes the

flexible-structure model here. The presentation here is most useful for our

approximation theory because of the explicit construction of the inverse of

17



the semigroup generator. For the purposes of this paper, we do not need to

characterize the operator A itself more explicitly, but we should make the

following points.

First, from _-1 we see

D(A)=K(x,x): x 8 v, x + AvlADx 8 D(Ao)}.

(2.18)

In many applications, especially those involving beams, the "natural boundary

conditions" can be determined from (2.18) and the boundary conditions included

in the definition of DAo). In the case of a damping operator that is bounded

relative to _0I/2, D(A) = D(Ao)_¢ V. If the damping operator is bounded rela-

tive to A_ for _ < i, then A has compact resolvent.

In many structural applications, the open-loop semigroup is analytic,

although this has been proved only for certain important cases. Showalter

obtains an analytic semigroup when the damping functional is V-coercive; for

example, when there exists a damping operator DO that is both Ao-bounded and

as strong as AO. Such a damping operator results from the Kelvin-Voigt

viscoelastic material model. Also, it can be shown that the semigroup is ana-

lytic for a damping operator equal to coA _ for 1/2 <_ _ < 1 and co a positive

scalar. The case _ = 1/2, which produces the same damping ratio in all modes,

is especially common in structural models, and Chen and Russell [C1] have

shown that the semigroup is analytic for a more general class of damping

operators involving A1/2.

Finally, we can guarantee that the open-loop semigroup generator is a

spectral operator (i.e., its eigenvectors are complete in E) only for a damp-

ing operator that is a linear combination of an H-bounded operator and a
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fractional power of AO. However, nowheredo we use or ass_e anything about

the eigenvectors of either the open-loop or the closed-loop semigroup genera-

tor. The r_tural modes-- of undampedfree vibration -- in (2.2) are always

complete in both H and V.

2.2 The Adjoint of

Since (AvlAD) is selfadjoint on V, direct calculation shows that 7-* :

-- the adjoint of _-1 with respect to the E-inner product -- is

A

(2.19)

Then '_* (,_-*)-1 Having explicitly facilitates proving strong conver-

gence for approximating adjoint semigroups.

2.3 Exponential Stability

The following theorem says that, if there are no rigid-body modes and if

the damping is coercive (basically, all structural components have positive

damping), then the open-loop system is uniformly exponentially stable. That

the decay rate given depends only on the lower bound for the stiffness opera-

tor and the upper and lower bounds for the damping functional is essential for

convergence results for the approximating optimal control problems of subse-

quent sections. The theorem is a generalization of Theorem 6.1 of [GI] to

allow more general damping, but the proof is entirely different and much

nicer. The current proof uses an explicit Lyapunov functional for the homo-

geneous part of the system in (2.15). Recall that T(') is the open-loop semi-

group, with generator A, and E is the total energy space V _ H.
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Theorem _._.

constant in (2.4), and let 50 and 51 be positive constants such that

SoIIVll _ i do(v,v) i SlllVll _, v 8 v.

Suppose that A0 and do are H-coerclve. Let p be the positive

(2.20)

Then

Proof. For 7 > max{ _ !], define Q e L(E) as' 80

Q

(2.22)

(AvIAD)- is selfadjoint and nonnegative on V, Q is selfadJolnt and coer-Since

cive on E. Define the functional p(') on E by

2 • H2p(z) = <O.z,z> E = v(llxll v + Ilxll ) + 2<x,x> H + do(x,x),

where z = (x,x)• From (2.4), we have

(2.23)

so that

2 I <x, x> H I i _llXllvllXll H i Izll .
(2.24)

with

__,) 2 p-1 2(_ Ilzll E l p(z)I Ilzll£
(2.25)

p = (7+_+ 51)-1.
(2.26)
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Next take z -- (x,x) e D(A) and set A(x,x) -- (Y,Y) e E, or

42.27)

Note x = Y s V. Now,

<QAz, z>E =

_ ,<y,^_1^Dy>V_ li^V-1^_+_ly112+ IIY112

2 ",_)- 11"_11_I
= - [Iixll v + _do(X

(2.28)

From 42.20) then,

2

2 + (_50_l)llxll 2] i-Ilzll E" 42.29)
<QAz,z> E <_- [llxllv

Therefore P(') is a Lyapunov functional, and the theorem follows from (2.25),

42.26) and 42.29), with Y = + • 0



3. The Optimal Control Problem

Subsection 3.1 presents some Preliminary definitions and results for the

optima/ llnear-quadratlc regulator problem on an arbitrary real Hllbert space.

These results are generic in the sense that the Hilbert space E is not neces-

sarily the energy space of Section 2, and the operators A, B, etc., do not

necessarily represent an abstract flexible structure as in Section 2. In the

second half of the paper, having such generic results will allow us to obtain

the approximation theory for the infinite dimensional state estimator from the

analogous results for the control problem. Subsection 3.2 gives some impor-

tant implications of the general results for the case where the control system

is that defined in Section 2.

3.1 The Generic Optimal Regulator Problem

Let a llnear operator A generate a Co-semlErou p T(t) on a real Hilbert

space E, and suppose B e L(Rm, E), Q e L(E,E) and R ¢ L(Rm), wlth Q nonnegatlve

and selfadJoint and R positive definite and symmetric. The _

9__ _E is to choose the control u e L2 (O,.;Rm) to minimize the cost
functional

J(z(0),u) = I

0 (<Qz(t),z(t)> E +

where the state z(t) Is given by

<Ru(t),u(t)>Rm)dt,

(3 .I)

z(t)

3.!.

T(t)z(O) + }T(t-q) Bu(_)dq,
0 t 1 O.

A function u e L2(O,.;U )

(3.2)

is an _ __ fo___rt_hg_he
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initial stat_____ee_z, or simply an admissible control for z, if J(z,u) is finite;

i.e., if the state z(t) corresponding to the control u(t) and the initial con-

dition z(0) = z is in L2(0,-;E).

Definition 3_.2_ Let the operators A, B, Q, and R be as defined above. An

operator II in L(E) is a solution of the Riccati algebraic equation if II maps

the domain of A into the domain of A and satisfies the Riccati algebraic

equation

A IT + II A - II BR-1B*II + Q = O.
(3.3)

Theorem 3.3 (Theorems 4.6 and 4.11 of [G4]). There exists a nonnegative sel-

fadjoint solution of the Riccati algebraic equation if and only if, for each

z e E, there is an admissible control for the initial state z. If II is the

minimal nonnegative selfadjoint solution of (3.3), then the unique control

u( ) which minimizes J(z,u) and the corresponding optimal trajectory z( ) are

given by

u(t) = -R-1B *I_(t)
(3.4)

and

z(t) = s(t)z,

where S(') is the semigroup generated by A-BR-IB_. Also,

(3.5)

J(z,u) = rain J(z,v) = < 11 z,z> E

v (3.6)

If, for each initial state and admissible control,
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i_ llz(t)ll = o,
t-->®

(3.7)

there exists at most one nonnegative selfadJolnt solution of (3.3). If Q is

coercive, (3.7) holds for each initial state and admissible control and S(. )

is uniformly exponentially stable. []

We will refer to T(.) as the _-l_9_R _ and to S(.) as the

oDtlmal 9__-/_.q_ seml_rouD.

To prepare for the convergence analysis In Sections 5 and 9, we must

present now some rather arcane estimates for the decay rate of the closed-loop

system in the optimal control problem.

Theorem 3_.4 Suppose that the open-loop semigroup T(.) satisfies

IIT(t)ll < M1ealt , t A O,

(3.8)

for positive constants _ and a1, that I_ is the minimal nonnegatlve selfad-

Joint solution to (3.3), and that S(t) is the optimal closed-loop semlgroup in

Theorem 3.3. If there exists a constant _ such that, for each z z E,

OD

f IIs(t)zll2dt __ Mo(<"z,z>_. + Ilzll 2)
0

(3.9)

P

and a constant Y_) such that

II Z1 II <_ v_,
(3.10)

P

then there exist positive constants _ and a2, which are functions of MO, M_,

M1, and aI only, such that
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-a 2 t
IIs(t)ll , t O. (3 .Ii)

Proof. This follows easily from Theorems 2.2 and 4.7 of [ ].

Lemmg 3.5. Suppose that there exist positive constants M and a such that

llT(t)ll i Me-°t, t l O.
(S .12)

t

If z(O) . E, h 8 L2(O.®;E), and z(t) = T(tl.z(O) + f T(t-s)h(s)ds, then
0

fl Iz(t)ll 2 dt l I Iz(O) II + MI Ihl IL2 2.
0 (3.13)

_o
The result follows from (3.12), the convolution theorem [DI_ page 951]

and the triangle inequality, t]

Lemma 3.6. Suppose that E is finite dimensional and that the pair (Q,A) is

observable (in the usual finite dimensional[ sense). Then there exists a con-

stant M, which is a function of A, B and Q only, such that

/llz(t)ll2dt i M(f (<Qz(t),z(t)> E + liu(t)ll2)d t,
0 0 (S .14)

where z(t) is given by (3.2).

Proof. The proof, which is at most a mild challenge, is based on the fact

that the observability grammian
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w(t)=
t
f eATtQeAtdt

0

is coercive for any positive t. [3

(3.15)

The next theorem says, among other things, that if the open-loop control

system decouples into a finite dimensional part that is stabilizable (in the

usual finite dimensional sense) and an infinite dimensional part that is uni-

formly exponentially stable, then the entire system is uniformly exponentially

stabilizable, so that (3.3) has a nonnegatlve selfadJoint solution.

Theore_ 3.7. Suppose that there exists a finite dimensional

D(A) such that E0 and E0_reduee A (and T(t)), and write

subspace E0 C

A

v A22 LB21]' - 'LQI_ o_]
(3.16)

where All and A22 are the restrictions of A to E0 and D(A)M EO_, respectively.

Similarly,

]T(t) = 0

T22(t) "

(3.17)

Also, suppose that the pair (All,B11) is stablllzable and that there exist

# I

positive constants M1, aI and _ such that

P

W

l iT22(t)ll <_ M1 e-alt, t 2 0

(3.18)

and
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max{llBll,llQll} ! _-
(3.19)

i) Then there exists F e L(E,R m) such that A-BF generates a uniformly

exponentially stable semigroup on E. Also, (3.3) has a nonnegative selfad-

joint solution, and the minimal such solution satisfies (3.10) with _ a func-

tion of All, BII, R, MI, aI and _ only.

ii) If Q12 = 0 and the pair (_1' _1 ) is observable, then there exists a

unique nonnegative selfadjoint solution II to (3.3), and there exist positive

constants _ and "2 -- which depend on All, Bll, QII' R, _, o I and _ only --

such that the optimal closed-loop semigroup satisfies

-o2t

IIs(t)ll < M2e , t I o.-- (3.20)

Proof. i) To say that (All,B11) is stabllizable means that there exists a

linear operator Fll from _ to Rm such that each eigenvalue of A11-B11FI1 has

negative real part. Hence A-BF generates _ uniformly exponentially stable

semigroup if F = [Fll O], so that there exists an admissible control for each

initial condition in E.

It is easy to write down an upper bound for the performance index in

, f

(3.1) in terms of R, _ , _, o I and the decay rate of exp( [All -BI1 Fll ]t).
I P

That the _ in (3.10) depends only on All, BI1, R, _, aI and _ follows then

from the fact that Fll is a function of All and Bll.

l #

ii) Clearly, (3.8) holds with M 1 and aI depending only on All, Bll, _, a1

and Fll. Therefore, we have (3.8) and (3.110) with the bounds depending only

on All, Bll, _1' R, , aI and _ • Finally, the existence of an _ for
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(S.9) which depends only on these parameters follows from usinE (3.1) and

(3.6) in applying Lemma 3.6 to the part of the system on E0 and then Lemma S .5

l
to the part of the system on E0. Part ii) of this theorem then follows from

Theorem 3.4. []

l

Remark 3-._8When we say in Theorem 3.4 that _ and a2 are functions of _, _,

_, and aI only, we mean, for example, that for two optimal control problems

on different spaces E, with different operators A, B, etc., if the same con-

stants _, _, _, and al work in (3.8)-(3.10) for both problems, then the

same constants _ and a2 will work in (3.11) for both problems. Similarly, in

l P

Theorem 3.7 ll), as long as E0, _1' Bl1' _1' R, _, aI and _ remain the

same, the same _ and a2 will work in (3.20) even if b"L, _2' B21 and Q22

change.

3.2 Appllcatlon to Optimal Control of Flexible Structures

For the rest of this section, _, _, A, T(t), B0 and B are the operators

defined in Section 2.1, and E = V X H is the energy space defined there.

3_.9. Theorem 3.7 is useful mainly when all but a finite number of

modes have coercive damping in the open-loop system and the damped and

undamped parts of the open-loop system remain orthogonal. This is the case,

for example, with modal damping. The next theorem does not require ortho-

gonality of the damped and undamped parts of the system, but it does require

an independent actuator for each undamped mode. The situation of Theorem 3.10

is typical in aerospace structures: Any elastic component should have some

structural damping, but rigld-body modes are common; for a structure to be

controllable, an actuator is required for each rlgid-body mode.
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Theorem 3_.i0. i) Suppose that A1 = BoB 0 and that A0 = _ + _ and 70 = d o +

AI are H-coerclve, so that there exist positive constants p , y and _ such

that, for all v e V,

Ilvll2v 2. pllvll_], (s.21)

do(v,v) l Pl Ivll , (s.22)

do(V,V) i vllvll , (s.23)

and

max(I IBol I,I IQI I.I IRll] i (3.24)

(The V-continuity of do implies (3.23).) Then (S.S) has a minimal nonnegatlve
f

selfadJoint solution If, which satisfies (3.10) with M0 a function of p, 7

and _ only .

ii) Suppose also that

<Qz,z>z 2 pllzll2z, z, z. (3.25)

Then the optimal closed-loop semigroup satisfies

-a2t

lls(t)ll i M2e , t I o, (3.26)

where _ and a2 are positive constants depending on P, 7 and _ only.

r_. i) The suboptimal control
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B $
u(t) =- o[X(t) + x(t)]

(3.27)

produces a closed-loop system with exponential decay at least as fast as that

in Theo?em 2.1. The required upper bound in (3.I0) follows then from (3.I),

(3.6) and (3.24)

il) In this case, the _ in (3.9) is p, and Theorem 3.4 yields the result. []

Now we wlll consider the structure of the optimal control law in more

detail. Since IIe L(E,E) and E = V X H, we can write

where% e L(V,V), II1 e L(H,V), % , L(H,H), and%

and eel fadj oint.

(3.28)

and % are nonnegative

With z = (x,x), as in Section 2, (3.4) becomes

Since B0 e L(Rm, H), we must have vectors ble H, II i i mo such that

(3.29)

m

BoU = E biu i
i=l

(3.30)

for

•.. ]T m.u = [ulu 2 um e R

Also, for h e H,

(3.31)

11,

Boh = [<bl,h>H <b2,h> H "'. <bm, h>H ]T.

(3.32)

Since _x(t) and %x(t) are elements of H, we see from (3.29) and
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(3.32) that the components of the optimal _:)ntrol have the feedback form

ui(t) = - <fi,x(t)>v - <gi,_(t)>H, i = 1 .... ,m,
(3.33)

where fi 8 V and gi e H are given by

m

fi = [ (R-l) ij ]_ibj
j=l (3.34a)

m

gi = X (R-1) lj_bj, i = L ..... m.
j=l (3.34b)

We call fi and gi functional zains.
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4. The Approximation Scheme

4.1 Approximation of the Open-loop System

HvDothes_ 4.1. There exists a sequence of finite dimensional subspaces V n of

V such that the sequence of orthogonal projections PVn converges V-strongly to

the identity, where PVn is the V-projection onto V n. Also, each V n is the

span of n linearly independent vectors ej.

Since it should cause no confusion, we will emit the subscript n and write

just ej, keeping in mind that the basis vectors may change from one Vn to

another, as in most finite element schemes. Also, we will refer to the Hil-

bert space En = Vnx Vn, which has the same inner product as E = VX H.

For n _ 1, we approximate x(t) by

n

Xn(t) = }- _j(t)ej,
j=l

where _(t) = (_l(t), _2(t ) ....

Mn'_'(t) + Dn_(t)

_n(t ) )T satisfies

+ Kn_(t) = B_u(t),

(4.1)

(4.2)

and the mass matrix Mn, damping matrix D n, stiffness matrix Kn , and actuator

influence matrix B_ are given by
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Mn = [<ei,ej>H], Dn = [do(el,ej)],

Kn = [A_/2ei,_/2e >H] = [<e i, • [<Alei,ej> H]j ej"V] - , (4.3)

B_ = [<ei,bj>H].

Of course, (4.2) can be written as

• Anq Bnu= +
(4.21 )

where

n = [_T, _T]T (4.4)

and

No_:

I =I° l •M-nK n -M-nD nB (4.5)

Throughout this paper, we use the superscript n in the designation of

matrices in the nth approximating system and control problem, llke

An , Bn, Mn, etc. Hence the super=_cript n indicates the order of

approximation -- and it nev_er indicates a power of the matrix. By M-n,

we denote the inverse of the mass matrix M n.

In the designation of a linear operator in the nth approximation, we use the

the subscript n. For example, An and B n are the operators whose matrix

representations are An and Bn, respectively.
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For convergence analysis, it is useful to note that (4.1) and (4.2) or

(4.2') are equivalent to

z (t) = AnZn(t) + Bnu(t) •n

where z

n = (Xn•Xn)e En, and An e L(En) and B n 8 L(Rm• En) are the operators

whose matrix representations are given in (4.5). Also, for any real _•

is equivalent to

CVn = h

.2/

(4.6)

(4.7)

and

(X2Mn + XD n + Kn)a I
= (kM n + Dn)_ 1 + Mn_ 2

(4.8)

if

a 2 = ka 1 - 61

(4.9)

vJ n n .

= 5- aJe hJ = =Zl_Jei•n i=l i i and n i j= 1,2.

(Substituting An and (4.10) into (4.7) yields (4.8) and (4.9)).

(4.10)

Next• we will prepare to invoke the Trotter-Kato semlgroup approximation

theorem to show how (4.2)• (4.2') and (4.6) approximate (2.1) and (2.15).

First• we will treat the case in which A0 is coercive (no rigid-body modes)

so that AI=O and AO=_; the genera/ case is a stralght-forward extension. For

A0 coercive• the open-loop semigroup generator A is maximal dlssipatlve. Also,

for each n, A is disslpative on En. The main idea here is to project (k-A) -In
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onto V in a certain inner product and observe that the result is exactly
n

(k-An)-1, where An is the operator on V n in (4.6) and (4.7). Of course, we

need only do this for real k>0.

For real k>0 then, define an innerprcduct on V by

" " = A2<','>H + kd0(',') + <'''>V"< ' >k (4.11)

Under the hypotheses in Section 2 on do , ,:"''>k is norm-equivalent to <'''>V"

For n _ 1, let Pn(k) be the projection of V onto V n in the inner product

<'''>k" Now let hl, _ e H and note that

vI

(4.12)

is equivalent to

vl 1 _ h2/lI(::)( (4.13)

With A-I from (2.10), (4.13) is equivalent to

(I + XAvIA D + k2Ao l)vl = (kA01 + AvIAD)hl + A_lh2 (4.14)

and

v2 kv i h1= - • (4.15)

If

vI = pn(k)v I and v2 = Pn(k) v2,n n (4.16)

it follows from (4.11) and (4.14) that
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<el, 1Vn> A = <el,vl>_

 2<ei,% Ivl>H +  <ei,AvIADV1>v +

<el' (A2AoI+AAVIAD +I) vl>v

<ei, vl>v
(4.17)

= <eI(AAoI+AvIAD)hl+Aolh2>v '

and from (4.15) that

2

<el,Vn> x = <el,v2>k = A<el,vl>k - <el,hl>x .

(4.18)

Now, for hI = hI h2 h2 1 v2n' hI h2n e Vn, = e Vn, and and wrltten as Inn Vn' n n

(4.10), (4.17) and (4.18) yield (4.8) and (4.9) again.

Thls shows that

[Pn(_ ) p_(%)I(A-A)-I[En = (_.-An)-1,

whlch yields

(4.19)

[Pn(_ ) 0 I(k_A)-IPE n (A-An)-IPEn
pn(A ) =

(4.20)

where PEn is the E-_ of _E 9_ En. The projection PEn can be written

['Vn0IPEn = PHn '

(4.21)

where PVn is the V-projection onto Vn, as before, and PHn is the H-projection

onto Vn. Since the V-norm is stronger than the H-norm and the norm induced by
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the A-innerproduct is equivalent to the V-norm, it follows from Hypothesis 4.1

(k-An)-1 as n-+ =. Now, wlth A
that

PEn converges E-strongly to (l-A) -I
n

extended to E_as'n say, n(PEn-I), Trotter-Kato [KI, page 504, Theorem 2.16]

yields the following.

The__ 4.2. For A0 coercive, let Tn (') be the (contraction) semigroup gen-

erated on En by An . Then, for each t I O, Tn(t)PEn converges strongly to

T(t), uniformly in t for t in bounded intervals.

In the general case, when A0 is not coercive, the open-loop generator A

ls obtained from the dissipative [ by the h_unded perturbation in (2.13), so

that [G3, Theorem 6.6] yields the following generalization of Theorem 4.2.

or_C_ 4.3. Let Tn(') be the semlgroup generated on En by An . Then, for

each t I O, Tn(t )PEn converges strongly to T(t), uniformly in t for t in

bounded interval s.

Theorem 4.4. When A has compact resolvent, (k-An)-iPEn converges in L(E) to

(_-A) -i .

2r_9_. This follows from (4.20) and a standard result that the projections of

a compact linear operator onto a sequence of subspaces converge in norm if the

projections converge strongly to the identity, as do PEn and Pn(k). []

That the adJoint semigroups also converge strongly follows from an argu-

ment entirely analogous to the proof of Theorem 4.2. In particular, equations

llke (4.11)-(4.17) are used to show that
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[Pn(k) 0 1 = (k-A:)-IPEn0 Pn(k) (k-A*)-IPEn
(4.22)

-, A-1In showing this, A is used as was used above.

S

to calculate An with respect to the E-inner product.

Also, care must be taken

The result is

Theorem 4.5. Let Tn(') be the sequence of semigroups in Corollary 4.3. Then,

* *(t), uniformly in t for t in
for each t I O, Tn(t)PEn converges strongly to T

bounded intervals.

Finally, for the approximation to the actuator influence operator B s

L(Rm,E), recall Bn 8 L(R m, En), the operator whose matrix representation is

the matrix B n in (4.5). From (4.3), it follows that

Bn = PEn B" (4.23)

S

Since B has finite rank m, Bn and Bn converge in norm to B and B , respec-

tively.
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4.2 The Approximating Optimal Control Prob]eros

The nth ot_ co_9_trolro9__blem is" given Zn(0) : (Xn(0),Xn(0)) e En'

choose u e L2(0,®;R m) to minimize

Jn(zn(0),u) = j(<QnZn(t),Zn(t)>E + <Ru(t),u(t)>Rm)dt,
0 (4.24)

where Qn = PEn QIEn" We assume:

4_._6. For each n >_ I and Zn(0)e E n, there exists an admissible con-

trol (Definition 3.1) for (4.6) and (4.24).

A sufficient condition for Hypothesis 4.6 is that, for each n, the system

(An, B n) be stabilizable.

By Theorem 3.1, the optimal control Un(t) has the feedback form

B _

Un(t ) = -R-I n%Zn(t) (4.25)

where % is a linear operator on E n, _n is nonnegative and selfadjoint, and [_

satisfies the Riccati equation

An_ + %A n - HnBnR-IBn_ + Qn = O. (4.26)

As a result of Hypothesis 4.6, (4.26) ha_. at least one nonnegative, selfad-

joint solution. The minimal such solution is the correct H n here. If the

system (An, Qn) is observable, then Hn is the unique nonnegative, selfadjoint

solution to (4.26), and is positive definite. If we write% as
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then (4.25) becomes
(4.27)

Un(t) = - E-IBo [_Inxn(t) + %nXn(t)].

(4.28)

The feedback law (4.28) can be written in functional-feedback form, just

as in Section 3. We have

where

Un(t) = [Uln(t ) U2n(t)...Umn(t)] T,

(4 •29)

and

Uin(t) = - <fin" Xn (t)>v - <gin, Xn(t)> H, 1 _< i i m,

(4.30)

m

fin = Z (R-1)
j=l lJ]11nPHnbj' 1 < i < m,

(4.31a)

gin = _ (R-1
j--1 )ij _nPHnbj • 1 ! i ! m.

(4.31b)

Of course, fin and gin are the nth approximations to the functional gains f.

and gi in (3.34). 1

In Section 5, (4.25)-(4.31) will be useful for studying how the solution

to the nth optimal control problem converges to the solution to the original

problem of Section 3, but for numerical solution of the nth problem, we need

the matrix representations of these equations.

We will need the following grammlan matrices:
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and

_n = [<ei,ej>v] = Kn + [<Alei,ej>H]
(4.32)

]Wn = 0
e

LO Mn

Not._e:The matrix W-n will be the inverse of_ W n. The superscript n

indicates the _der of approximation, not a power of the matrix.

the note following (4.5).

(4.33)

on any matrix

Also, recall

Now recall Qn = PEnQIEn • Since Q = Q* e L(E) and E = V X H, we can write

Q =i0:
[Q1

(4.34)

where Q0 = _e L(V), QI e L(H,V), and Q2 = Q; e L(H). Straightforward ealcu-

lation shows that

Qn = w-_n,

where Qn is the matrix representation of Q

metric matrix

(4.35)

and _n is the nonnegative, sym-

with

n

(4.36)

Q; = [<el, Qoej >V] ,
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Q_ = [<ei'Qlej>v]' (4.37)

= [<ei,O2ej>H].

Also, recall that An and B n are the operators whose matrix representations are

given by (4.5), and note that the matrix representations of An and B n are

w-n(An)Tw n and (Bn)Tw n, respectively.

With the matrix representation of _ denoted by _n the Riccati operator

equation (4.26) is equivalent to the Riecati matrix equation

w-n(An)Twn Hn + 11nAn _ ]]nBnR-l(Bn)Twn Hn + Qn = O.

(4.38)

While % is selfadjoint, _n in genera/ is not symmetric, but the matrix

= Wn H n
(4.39)

is symmetric and nonnegative, and positive definite if % is. Premultiplying

(4.39) by W n, we obtain

(An)T_ + _A n _ _BnR-I(Bn)T_ + _n : 0,

which is the Riccati matrix equation to be solved numerically.

(4.40)

Now we need one more set of matrix equations for the numerical solution

of the nth optimal control problem. Since the functional gains f. andin gin

are elements of Vn, they can be written as

n fi n gi

• = 7 _j e. and = 7 _. ej, i = 1..... m,
fln j=l J gin j_l J (4.41)

fi _gi fi _giwhere _ e R n. We need equations for _ and in terms ofH n. One
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way to get these equations is to partitionI[n(obtained from (4.39)) and then

work out the matrix representation of (4.31). However, another approach is

more instructive because it relates the present Hilbert space methods to the

standard finite dimensional solution of the nth optimal control problem.

The nth optimal control problem can be stated equivalently as:

_(0) = [_(o)T,_(O) T] e R2n choose u e L2(O,_;Rm) to minimize

given

gO

Jn(_(O),u) = J(_(t)T_nq(t) + u(t)TRu(t))dt,
0

(4.42)

where _(t) : [_(t)T,_(t)T] T satisfies (4.2'). For (4.2') and (4.42), the

optimal control law is

un = -R-iBn_(t)

where _ is the minimal nonnegative, symmetric solution to (4.40).

(4.43)

Since _ is related to x
n by (4.1), the optimal control un in (4.43) must

be equal to the optimal control un in (4.29)-(4.31). Substituting (4.41) into

(4.30) yields

Uin = _ (_fi)T_Kn _ _ (_gi)TMn _ = _[(_fi)T (_gi)T]wn_.

Then, using (4.44) and equating (4.29) and (4.43) yields

[_ fl f2 mI
•"" _f

_gl _g2... _gm_

= w-n_BnR -1 "

(4.44)

(4.45)

We now have the complete 9_9__ t__ooth___enth _ control problem:
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The Riccati matrix equation (4.40) is solved for_; then the optimal control

is given by (4.43), and equivalently by (4.29)-(4.30) with the functional

gains fin and gin given by (4.41) and (4.45). In the next section, we will

give sufficient conditions for the solution to the nth optimal control problem

to converge to the solution to the optimal control problem in Section 3 for

the original infinite dimensional system.
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5. Convergence

As in Section S, subsection 5.1 will state some results for the optimal

linear regulator p_oblem involving generic linear operators A, B, Q, etc., on

an arbitrary real Hilbert space E, and subsection 5.2 will expand upon these

results for the particular class of control problems treated in this paper.

5.1 Generic Approximation Results

Let the Hilbert space E and the linear operators A, T(,), B, Q and R be

as in Section 3. Suppose that there i_, a sequence of finite dimensional sub-

spaces E n, with the projection of E onto E n denoted by PEn' such that PEn con-

verges strongly to the identity as n -_ = • and suppose that there exist

sequences of operators A n 8 L(En), Bn _:L(Rm'En )' Qn = Qn e L(En), Qn I O,

such that we have the following strong convergence. For all z e E and tlO,

exp(Ant)PEnZ --> T(t)z (5.1)

and

exp(Ant)PEnZ -_ T*(t)z

as n --> =, uniformly in t for t in bounded intervals; for each u e Rm,

(5.2)

BnU -_ Bu; (5.3)

for each z s E,

QnPEn z -_ Qz. (5.4)

_ihg_qEg_ 5.!. Suppose that for each n there is a nonnegative, selfadJoint

linear operator _ on En which satisfies the Riccati algebraic equation
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If there exist positive constants M and 6, independent of n, such that

(5.5)

[[exp([An-BnR-iB:I]n]t)][ <Me -_t, t )_ O,

(5.6)

and if [[ _[[ is bounded uniformly in n, then the Riccati algebraic equation

(3.3) has a nonnegative selfadJoint solution II: and, for each z e E,

and

HnPEn z _ Hz

(5.7)

exp([An-BnR-iB_]t)PEnZ --> S(t)z

uniformly in t I O, where S(') is the semigroup generated by A-BR-IB_ .

there exists a positive constant 8, independent of n, such that

(5.8)

If

Qn 15,

(5.9)

then [[ I_[[ being bounded uniformly in n guarantees the existence of positive

constants M and _ for which (5.6) holds for all n.

r_. The theorem follows from Theorem 5.3 of [G4] when the operators An, On

and _ are extended to all of E by defining them appropriately on En. For the

details of this procedure, see Section 4 of [GI]. Or better, Banks and Kun-

isch [B6] have modified Theorem 5.3 of [G4] to obtain essentially the present

theorem without using the artificial, and rather clumsy, extensions to E _
n in

the proof. O
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The__ 5.2 The strong convergence in (5.7) implies uniform norm convergence

of the optimal feedback laws:

#IB naPE - B ull -+o as n_.®.
n

(5.10)

r_. This follows from the selfadJointne_s of _ and PEn and the finite

dimensionallty of the control space Rm. See equations (4.2S) and (4.24) of

[G1]. 0

The__ _5.S_ Assume the hypotheses of Theorem 5.1 but do not assume (5.6) or

(5.9). If [__[[ is bounded uniformly in _, then the Riccatl algebraic

equation (S.S) has a nonnegative selfadJoint solution ]I, and, for each z e E,

_PEnZ converges weakly to Hz.

r_. This is Theorem 6.7 of [GS], whose proof is valid under the hypotheses

here. _]

The main shortcoming of the weak convergence in Theorem 5.S is that it does

not yield uniform norm convergence of the feedback control laws.
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5.2 Convergence of the Approximating Optimal Control Problems of

Section 4.2

For the rest of this section, _, AI, A, T(t), B0 and B are the operators

defined in Section 2. The operators An, B n, Qn and H n are the operators in

the approximation scheme of Section 4. In particular, 11 e L(En, En) is the

minimal nonnegative, self-adJoint solution of the Riccatl operator equation

(4.26). According to Corollary 4.3 and Theorem 4.5, the Ritz-Galerkin approx-

imation scheme presented in Section 4.1 converges as required in (5.1) and

(5.2); (5.3) and (5.4) follow from (4.23) and the definition O n = PEnQ[En in

Section 4.2. Also, Hypothesis 4.6 guarantees for each n the existence of the

required solution of the Riccati equation (5.5) in Theorem 5.1.

Since _ is nonnegative and self-adJoint, its eigenvalues, which are

also the eigenvalues of its matrix representation, are real and nonnegatlve,

and its norm is equal to its maximum eigenvalue.

e_ 5_._ If Q is E-coerclve and do = 0 (i.e., there is no open-loop damp-

ing), then there is no nonnegative self-adJoint solution of the Ricoati opera-

tot equation (3.3), and

I[ IInll -'> ® as n --> ®. (5.11)

Y__9__. Recall the operator _ in Section 2.1. By Theorem 1 of [G2], there can

be no compact operator C e L(E,E) such that _ + C generates a uniformly

exponentially stable semlgroup. Therefore, since a compact linear perturba-

tion of _ yields A, there can be no compact linear C such that A + C generates

a uniformly exponentiallY stable semlgroup.
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Now, unless (5.11) holds, there exists .-Lsubsequence such that II_jl[

is bounded in nj, so that Theorem 5.3 says that there exists a nonnegative

self-adJoint solution II of (3.3). Since G is coercive, Theorem 3.3 then

says that the semigroup generated by A - BR-] B'If is uniformly exponentially

stable. But this is impossible -- BR-1BSII Js compact because its rank is not

greater than m. _]

Theorem _._. Suppose that A0 and do(',') are both H-coercive.

exist positive constants _ and a1, independent of n, such that

Then there

-alt

l_exp[Ant]l[ < Mle , t 10. (5.12)

_. First, we define Aon and DOn e L(Vn, Vn) to be the operators whose

matrix representations are M-nK n and M-nD n, respectively. (See Section 4.1.)

The operator An is then

[0An -_n= _Do
(5.13)

Since _ and do are H-coercive, there exists a positive constant p,

independent of n, such that

<Aonh,h> H _ pllhll_
(5.14)

and

<Donh,h> H 1 Pllhll 2 (5.15)

for all h e Vn . Since do is continuous on V ;( V, there exists a positive
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constant 7, independent of n, such that

<Donh,h> H < 7[[h[[v 2

for all h e Vn. The theorem follows then from Theorem 2.1. 0

(5.16)

Theorem 5.6. Suppose that A0 has an invariant subspace V0 which is also

invariant under the damping map AVIAD , that E0 = V0 X V0 is a stabilizable

subspace for the control system, and that the restrictions of A0 and do(-,-)

A

to V0 are both H-coercive. Also, suppose that V0 has finite dimension nO and

that, for each n _ nO in the approximation scheme, the first nO el, s span V 0

and the rest are orthogonal to V0 in both V and H.

i) Then (3.3) has a nonnegative solution IT, and for each n Z n0, (5.5) has a

nonnegative self-adjoint solution _. Also, I_ is bounded uniformly in n, so

that _ converges to 1] weakly, as in Theorem 5.3.

ii) If E0 and E0 (the E-orthogonal complement of EO) are invariant under Q,

and if the part of the open-loop system on E0 is observable with the measure-

ment Qz, then (5.6)-(5.8) hold as in Theorem 5.1.

Proof. We will invoke Theorem 3.7 to establish the existence of the uniform

bounds and decay rates needed in Theorem 5.1. In the approximating optimal

control problems, the part of the control system on E0 is the same for each n;

the approximation of the control system takes place on EO_. We can write En =

E0 @ , where Eon is the orthogonal complement of E0 in En, and E0 and E

clearly reduce the open-loop semigroup for each n _ no.

For the part of the open-loop system on Eon , Theorem 5.5 establishes
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# #

positive MI and al, independent of n, for (3.17). Also, we have a

independent of n for (3.18) because B n = PEn B and Qn = PEnQIEn" Therefore, i)

follows from Theorem S.? i) and Theorem 5.S.

The definition of Q and the requirement on where the various basis vec-
n

tors must lie imply that E0 and El 0"tOn reduce Qn if E0 and E reduce Q and that

the restriction of Q to E0 is the same for all[ n. Therefore, ii) follows from

Theorem 3.7 ii) and Theorem 5.1. D

Remark _S.[. In applications, the subspace V0 in Theorem 5.6 usually contains

rlgid-body modes. The theorem includes the ease where both A0 and dO are H-

coercive on all of V (no rigid-body modes and all modes damped). In this

case, V0 is the trivial subspace. O

Remark 5.8. Otherwise, for applications to flexible structures, Theorem 5.6

usually requires two things: first, modal damping must be modeled for the

structure, so that the natural modes remain uncoupled in the open-loop system;

second, the natural mode shapes must be used for the basis functions in the

approximating optimal control problems. Although these requirements may seem

restrictive from a mathematical standpoint, such modeling and approximation

predominate in engineering practice. Also, we get our strongest convergence

results under these conditions. For applications where the basis vectors are

not the natural mode shapes, the following theorem is useful.

$ $

Theorem 5_._9. Suppose that A0 + BoB 0 and do + BoB 0 are H-coercive. Then (S.S)

has nonnegative solution ]I, for each n (5.5) has a nonnegative self-adJoint

solution _, and H [_I is bounded uniformly in n. Hence Theorem 5.3

applies. Furthermore, if Q is E-coercive, then (5.6)-(5.9) hold in Theorem 5.1.
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Proof. The required bounds follow frc_ Theorem 3.10 and the proof of Theorem

5.5. Although we took A1 = BoB 0 in Theorem 3.10, this is not necessary in the

final result, since all bounded self-adJoint operators AI on H that make A0 +

A1 coercive yield equivalent norms for V.

Theorem 5.10. If (5.7) holds for each z 8 E, then

[[fin - fi[[V -_ O,

[[gin - gl [[H --_ O, as n -+ =,

where fi and gi are the functional gains in (3.16), and

approximating functional gains in (4.SI) and (4.41).

(5.17a)

(5.17b)

fin and gin are the

Proof. The result follows from (4.31). 0

Note that (5.10) and (5.17) are equivalent.
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6. Example

6.1 The Control System

One end of the uniform Euler-Bernoulli beam in Figure 6.1 is attached

rigidly (cantilevered) to a rigid hub (disc) which is free to rotate about its

center, point O, which is fixed. Also, a point mass mI is attached to the

other end of the beam. The control is a torque u applied to the disc, and all

motion is in the plane.

m 1

u

Figure 6.1. Control System
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r = hub radius

= beam length

I0 = hub moment of inertia about axis

perpendicular to page through 0

m b = beam mass per unit length

m I = tip mass

EI = product of elastic modulus and second moment

of cross section for beam

fundamental frequency of undamped structure

i0 in

I00 in

i00 slug in 2

.01 slug/in

i slug

13,333 slg inS/sec 2

.9672 rad/sec

Table 6.1 Structural Data

The angle e represents the rotation of the disc (the rigid-body mode),

w(t,s) is the elastic deflection of the beam from the rigid-body position, and

Wl(t) is the displacement of m1 from the rigid-body position. For technical

reasons, we do not yet impose the condition Wl(t) = w(t,_); more on this

later.

The control problem is to stabilize rigid-body motions and linear (small)

transverse elastic vibrations about the state e = 0 and w = O. Our linear

model assumes not only that the elastic deflection of the beam is linear but

also that the axial inertial force produced by the rigid-body angular velocity

has negligible effect on the bending stiffness of the beam. The rigid-body

angle need not be small.

For this example, it'Is a straight forward exercise to derive the three

coupled differential equations of motion in e, w and w I , and they do have the
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form (2.1'). However, to emphasize the fact _.hat we do not use the explicit

partial differentia/ equations, wewill not wJ-ire these equations here•

Rather, wewill write only what is normally needed in applications: the

kinetic and straln-energy functlonals, the dax_ipingfunctional and the actuator

influence operator.

Remark2.1 applies to this example, and to most examples with complex

structures. The generalized displacement vector is

x = (8,w,w I) e H0 = R L2(O,_) X R.

The kinetic energy in the system is

Kinetic Energy = 1/2 <x,x> H

where H is H0 with the inner product

A .f A A

<x'X>H = mb J0 [w+(r+s)@][w+(r+s)@]ds

+ +

As in most applications, we need not write the mass operator explicitly, but

there exists a unique selfadJoint linear operator _ on H0 such that

<X,X_ H = <M0x,_>H0 .

It is easy to see that _ is bounded and coercive• Hence H0 and H have

equivalent norms.

(6.1)

(6.2)

(6.3)

(6.4)

The input operator for (2.1') (which maps R to HO) is
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B0 = (i,0,0). (6.5)

Since we multiply (2.1') by _1 to get (2.1), the input operator for (2.1) is

(MoIBo) . Note that

(MoIBo)*H = B;, (6.6)

1B 0) *where (Mo1Bo)*H is the H-adJoint of (M0 and B 0 is the H0-adJoint of B0.

Remark 2.2 also applies here. The only strain energy is in the beam and

is given by

Strain Energy = 1/2 a(x,x)
(6.7)

with

where (")

account for rigid-body rotation.

Awa(x,_) = EIf w''w 'ds,
(6.8)

'' = a2(')/as2('). To make a(',') into an inner product, we must

Thus we set

<x'_>v -- a(x'Ax) + _ (6.9)

and define

V = {x = (O,¢,¢(I)): ¢ e H2(0,1), ¢(0) = #'(0) = 0 ].
(6.10)

Also, we have

A * A

<x,x> V = a(x,_) + <BoBoX,X>Ho
(6 .II)

*H A.
= a(x,x_ + <(MoIB O)(MOIBO ) x,x_ H,
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SO that A1 = BOB;, or (MoIB O) (MoIB O)*H depending on whether the H0 or the H-

inner product is used in computing the V-inner product. But we need neither A1

nor A0 explicitly. We need only (E.g) and (_.9), alorx with (6._), to comDute

the required inner products.

As mentioned in Remark 2.2, the operator A0 can be defined now by (2.6),

N

and the stiffness operator is A0 = _ - A1. Using the Ho-inner product in

(2.6) yields the A0 for (2.1'), and using the H-inner product yields the A0

for (2.1), which is _1 following the _ for (2.1'). The _ for (2.1') is

quite simple, and the reader might write it out. We will not, so that no one

will think that we use it. We will point out that D(A O) requires both the

geometric boundary conditions in V and the natural boundary condition w' '(t,_)

= O; i.e., zero moment on the right end.

Remark 6.1. That the geometric boundary conditions

w(t,0) = w,(t,0) = 0
(6.12)

and

: h(t)
(6.13)

are imposed in V but not in H -- i.e., on the. generalized displacement but not

on the generalized velocity -- is common in distributed models of flexible

structures. The natural norm for expressing the kinetic energy of distributed

components is the L2-norm , which cannot preserve constraints on sets of zero

measure. Because the strain energy involves spacial derivatives, the stronger

strain-energy norm can preserve the geometric boundary conditions (although,

as for the boundary slope of an elastic plate, the V-norm may impose some of
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these boundary conditions in an L2 rather than a pointwise sense). The

strain-energy norm is based on the material model of the distributed com-

ponents of the system, and it should not be surprising that such a norm is

required to connect the various structural components.

We assume that the beam has Voigt-Kelvin viscoelastic damping [C2], so

that the damping operator in (2.1) is

DO = Co_
(6.14)

where co is a constant. This means that the damping functional is

do (x,Ax) co a(x,Ax), ^= X,X 8 V.
(6.15)

6.2 The Optimal Control Problem

We take Q = I in the performance index in (3.1). This means that the

state weighting term <Qz,z> E is twice the total energy in the structure plus

the square of the rigld-body rotation. Since there is one input, the control

weighting R is a scalar.

According to (3.33), the optimal control has the feedback form

u(t) = - <f,x(t)> v - <g,_(t)> H

where x(t) has the form (6.1), and

f = (af,¢f,_f) = R-limBo e V,

(6.16)

(6.17a)
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g = (ag,¢g,_g) = R-I_B0 s H.

(6.17b)

Note that _f = Cf(_) is not used in the control law--recall (6.8) and (6.9).

6.3 Approximation

Our approximation of the distributed model of the structure Is based on a

finite element approximation of the beam which uses Hermlte cubic splines as

basis functions ([S1,S4]). These are the basis functions most commonly used in

engineering finite element approximations of beams. The splines and their

first derivatives are continuous at the nodes. Because the basis vectors ej

in the approximation scheme in Section 4 must _m in the space V defined in

(6.10), we write them as

eI = (1,0,0),

(6.18a)

ej = (0,¢j,¢j(1)), j = 2, 3, . ..,

(6.18b)

where the Cj's are the cubic splines. When we use ne elements to approximate

the beam, there are 2ne linearly independent spiines. Thus, with the rigid-

body mode, the order of approximation is n = 2n + 1.

For the numerical solution to the optima/ c_)ntrol problem, we have only

to plug into the formulas of Section 4. The matrices in (4.3) are calculated

according to (6.3), (6.8) and (6.9), with B0 given by (6.5). In particular,

Kn = [a(el,ej)], Dn = cO Kn, Hn = [(el,ej>H] ,

(6.19)

B_ = [1 o o "" o]v
= [<ei,_l(1,0,O)>H] = [<el,(1,0,O)> H ]

0(6.20)
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Note that the first row and column of Kn are zero. The matrix _n in (4.32) is

Kn with i added to the first element. The matrices An and B n are given by

(4.5) and, since Q = I, the matrix Qn is the W n in (4.33). With these

matrices, we solve the Riccati equation (4.40) and use (4.41) and (4.45) to

compute the approximations to the functional gains, which are

fn = (CLfn,¢fn,_fn), (6.21a)

gn = (agn,¢g n,_gn ) • (6.21b)

For convergence, we satisfy all the hypotheses of Theorem 5.9. In par-

ticular, since Q is the identity on E, it is coercive. Theorem 5.9 implies

that the solutions to the finite dimensional Riccati equations converge as in

Theorem 5.1 and that the functional control gains converge as in theorem 5.10.

6.2. It might appear that the hypotheses of Theorem 5.6 hold with no =

i, but not so. For j I 2, ej is orthogonal to eI in H0 and V not in H.

Recall (6.1)-(6.3), (6.9)-(6.11) and (6.18). []
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6.4 Numerical Results

# #

Figures 6.2a and 6.2b show the computed functional gain kernals _fn and

_gn for the damping coefficient co = 10 -4 , the control weighting R = 1, and

ne = 2, 3, 4, 5 and 8 beam elements. Table 6.2 lists the corresponding scalar

components of the gains. For co = 10-4 and R = 05, the convergence is slower,

as discussed below. To show the complete story of convergence, Figures 6.3a

and 6.3b and Table 6.3 show the results for ne = 2,3,4,5,8, and Figures 6.4a

and 6.4b and Table 6.4 show the results for ne = 4,6,8,10.

We have plotted _fn because the second derivative appears in the

straln-energy inner product in (6.8) and (6.9) and _fn converges in _(0,_).

Note that, since the Hermlte cubic spllnes have discontinuous second derlva-

I I

rives at the nodes, the approximations to Cf are discontinuous at the nodes.

P

Although H2-convergence guarantees only L2-convergence for _fn' it can be
P I

shown that _fn converges uniformly on [0,_] for this problem.

The tables omit _fn to emphasize the fact that it does not appear in the

feedback law and the fact that the convergence of _fn is not an independent

piece of information about the convergence of the control gains; since _fn(0)

= @fn(0) = 0, the convergence of @fn implies the convergence of _fn = _fn (_)"

On the other hand, although _gn = @gn (_) for each n, the H-norm convergence

of gn does not enforce this condition in the limit, as the Y-norm convergence

of fn enforces _f = _f(_). Hence, as far as we can tell from our results in

Sections 3.5, _fn is an independent indicator of the convergence of the con-

trol gains, as well as being used in the control law in (6.16). However, the

behavior of @gn in Figures 6.2b, 6.3b and 6.4b suggests that gn converges in

V. Stronger results on the continuity of _g and the convergence of @gn(_)
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should follow from a theorem stating that, because the open-loop semigroup

generator A is analytic, the solution to the infinite dimensional Riccati

Cfn ( )
equation maps all of E into D(A*). The fact that '' _ converges to zero in

Figure 6.2a also suggests such a theorem, but we have not proved it.

With the state weighting Q fixed, the two factors that determine the rate

of convergence are cO and R. Although we have used splines to approximate the

beam, the relation between the convergence rate and c0 and R probably can be

interpreted best in terms of the number of natural modes of the structure that

the optimal infinite dimensional controller really controls. Strictly speak-

ing, the controller controls all modes, but the functional gains lie essen-

tially in the span of some finite number of modes. This would be the number

of modes required for convergence of the gains if we used the natural modes as

the basis vectors in the approximation. The rest of the modes are practically

(but not exactly) orthogonal to the functional gains, so that the optimal

feedback law essentially ignores them. In general, the lighter the damping,

the more modes that will be controlled for given Q and R; the cheaper the con-

trol, the more modes that will be controlled for given Q and cO . The question

of the convergence of the finite element approximation to the functional gains

becomes then a question of how many modes the optimal control law really wants

and how many elements it takes to approximate those modes.

Numerical experience with optimal control of flexible structures has

shown this modal interpretation of the convergence of the approximating con-

trol laws to be very useful, and that it is difficult to improve upon the

natural modes as basis vectors for the approximation scheme (see [GS]_ How-

ever, whether the natural modes are always or almost always the best basis
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vectors is an open question. Weuse the cubic splines here to demonstrate

that a standard finite element approximation works quite well. Also, to use

the natural modes as basis vectors here, we first would have to compute them

using a finite element approximation-- as in most real problems-- and we do

not know in advance which or how many modes are needed. On the other hand, if

the most important natural modes are determi_led from experiment, then modal

approximation should be best.
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n

e afn ag n _gn

2 1.000 ,2141 -22.459
3 1.000 .2396 -25.221

4 1.000 .2496 -26.331

5 1.000 .2534 -26.786
8 1.000 .2561 -27.041

T__ 6._2. Scalar Components of Functional Control Gains

Damping coefficient c0 = 10-4; control weighting R = 1

number of elements ne = 2, 3, 4, 5, 8

ne Urn agn _gn

2 4.4721 1.0136 -108.27

3 4.4721 1.1770 -126.40

4 4.4721 1.2440 -133.87

5 4.4721 1.2781 -137.57

8 4.4721 1.3106 -141.15

6.3. Scalar Components of Functional Control Gains

Damping coefficient c0 = 10-4; control weighting R = .05

number of elements n = 2, 3 4 5, 8

n

e ef n ag n _gn

4 4.4721 1.2440 -133.87

6 4.4721 1.2973 -139.69

8 4.4721 1.3106 -141.15

10 4,4721 1.3141 -141.54

T__ 6._4. Scalar Components of Functional Control Gains

Damping coefficient c0 = 10-4; control weighting R = .05

number of elements ne 4, 6, 8, 10
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Figures 6.5a and 6.5b and Table 6.5 represent attempts to compute an

optimal control law for the structure when R = .05 but co = O. Since Q is the

identity operator in E and hence coercive, Theorem 5.4 says that no optimal

control law exists and that the norm of the solution to the finite dimensional

Riccati equation grows without bound as the number of elements increases.

This is reflected in the nonconvergence of agn, Cgn and _gn" although afn con-

f P

verges and the convergence of ¢fn is unclear.

In applications where the structural damping is not known, except that it

is very light, it is tempting and not uncommon engineering practice to assume

zero damping in the design of a control law for the first few modes, while

trusting whatever damping is in the higher modes to take care of them. How-

ever, if high performance requirements (large Q) or coupling between modes in

the closed-loop system necessitate a control law based on a more accurate

approximation of the structure, Theorem 5.4 and the current example warn that

the higher-order control laws are likely meaningless and rather strange if no

damping is modeled.

We should note that we have seen similar problems [Gg] where _ remains

bounded and the gains converge for zero damping but finite-rank Q. In such

cases, Theorem 5.3 says that an optimal control law exists for the distributed

model of the structure and that the finite dimensional control laws converge

to an optimal infinite dimensional control law. Also, Balakrishnan [B2] has

shown that an infinite dimensional optimal control law exists for no damping

when Q = BB s-
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ne afn "gn _gn

2 4.4721 1.0516 -112.23

3 4.4721 1.3 061 -140.18

4 4.4721 1.4758 -159.11

5 4.4721 1.5996 -172.64

8 4.4721 1.8407 -199.39

Table 6.5. Scalar Components of Functional Control Gains

Zero damping; control weighting R = .05

n_ber of elements ne = 2, 3, 4, 5, 8
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7. Th__eeOptimal Infinite Dimensional Estimator, _andCloae_-looo

S_xstem

As in Sections 3 and $, we will state some initial definitions and

results for an arbitrary linear control system on a Hilbert space in Subsec-

tion 7.1, and then discuss implications for flexible-structure control in Sub-

section 7.2.

7.1 The Generic Problem

Let A, T(t) and B be as in Subsection 3.1, with E an arbitrary real Hil-

bert space. The differential equation corresponding to (3.2) is, of course,

_(t) = Az(t) + Bu(t), t > O.

We assume that we have a p-dimensfonal measurement vector y(t) given by

(7 .I)

y(t) = Cou(t) + Cz(t), (7.2)

where CO 8 L(R m, RP) and C z L(E,R p) for some positive integer p.

^
Definition 7.1. For any F 8 L(RP,E), the system

A(t) = A_(t) + Bu(t) + F[y(t) - Cou(t)-C_(t)], t > O,
(7.3)

will be called an observer, estimator (we use the terms interchangeably), for

^ A

the system (7.1)-(7.2). Let S(t) be the semigroup generated by A-FC. The

A

observer in (7.3) is strongly (uniformly exponentially) stable if S(t) is

strongly (uniformly exponentially) stable.

To justify this definition, we write
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e(t) = z(t) - _(t)

and, with (7.1)-(7.3), obtain

e(t) = _(t)e(O), t 20.

(7.4)

(7.5)

Of course, an observer, or estimator, is necessary because the full state

z(t) will not be available for direct feedback, and the feedback control must

be based on an estimate of z(t). When, as in this paper, the desired control

law has the form

u(t) = -Fz(t)

(7.6)

for some F e L(E, Rm), the observer in (7.3) can be used to construct _(t) from

the measurement in (7.2) and then the control law in (7.6) can be applied to

zA(t). The control applied to the system is then

A

u(t) = -Fz(t),

and the resulting closed-loop system is

(7.7)

where S ,®(t) is the semigroup generated on E X E by the operator

A,. = [A-BF-_C] ' D(A.,®) = D(A))tD(A).

(7.8)

(7.9)

With the estimator error e(t) defined by (7.4), it is easy to show that

(7.8) is equivalent to (7.5) and
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z(t) = (A-BF)z(t) + BFe(t), t > 0,
(7.10)

where (A-BF) generates a semiEroup S(t) on E.

fol low inE.

Also, it is easy to prove the

Theorem 7.2. Suppose that there exist positive constants _, _, a I and Q2

such that

-alt

llsct)ll! _ e ,

I]_(t)lt < _e -_2t__ , t Z O. (7.11)

Then, for each real a3 < min{a I, a2], there exists a constant _ such that

-a 3 t

II s®,®(t)lli _e , t 2 ". (7.12)

Also,

a(A®,®) = a(A-BF)

where a(A ,_) is the spectrum of A®,®.

U a(A-_C),
(7.13)

The observer in (7.3) and the control I_ in (7.7) constitute a compensa-

tor for the control system in (7.1) and (7.2_. "The transfer function of this

compensator is

^ -19
§(s) =-F(sI-[A-BF + F(CoF-C)]) ,

(7.14)

When E has
which is an m X P matrix function of the complex variable s.

infinite dimension, the compensator transfer function is irrational, except in
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degenerate, usually unimportant cases.

The foregoing definitions of this section and Theorem V.1 are straight-

forward generalizations to infinite dimensions of observer-controller results

in finite dimensions. Balas [B3] and Schumacher [$2] have used similar exten-

sions.

#&

Now suppose that F is chosen as

AF o
(7.15)

A

where H e L(E,E) is the minimal nonnegatlve selfadJoint solution to the Hic-

cati equation

A A , ^ C$ A AAII + HA - II _-IcII + O = 0,

(7.16)

A A

with O e L(E,E) nonnegative and selfadJolnt and R _ L(RP, Rp) symmetric and

positive definite. Theorem 3.3 (with A, B, Q, R, H and S(t) replaced by

$ $ A A

A ,C , Q, R, _, and _*(t)) gives sufficient conditions for fl to exist and for

A
the semlgroup _*(t) -- and equivalently its adJoint, the S(t) generated by

^

A-IX C* _Ic -- to be uniformly exponentially stable.

Definition 1.3_. When the control gain operator is

F = R-IB * H ,

(7.17)

with H the solution to the Rlccati equation (3.3), and the observer gain

operator is given by (7.15) and (7.16), we will call the compensator consist-

ing of the observer in (7.3) and the control law in (7.7) the t__ fi_

dimensional compensator, and (7.8) the optimal 9/osed-lgeR _. rl
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1z -- Az + Bu

y = Cou + Cz

Control System

A A A

z = [A-BF-F(C 0 F-C)] z + F y

u = -F az

Optimal Infinite Dimensional Compensator

Figure 7.1. Optimal Closed-loop S)stem

1.4. The infinite dimensional obse3'ver defined by (7.3), (7.15) and

(7.16) is the optimal estimator for the st,,chastic version of (7.1) and (7.2)

when (7.1) is disturbed by a stationary ga_ssl an white noise process with zero

A
mean and covariance operator Q and the measurement in (7.2) is contaminated by

A

similar noise with covariance R. For infinite dimensional stochastic estima-

tion and control, see [BI, C4]. When the state weighting operator Q in (3.1)

is trace class, the optimal infinite dimensional compensator minimizes the

time-average of the expected steady-state value of the integrand in (3.1).

Existing theory for stochastic control of infinite dimensional systems

requires trace-class Q, but we have a well defined compensator for any bounded

nonnegative selfadjoint Q and 8, as long as the solutions to the Ricoati
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equations exist. As the next two sections show (without assuming trace-class

A

Q), the infinite dimensional compensator is the limit of a sequence of finite

dimensional compensators, each of which can be interpreted as an optimal LQG

compensator for a finite dimensional model of the structure. Therefore, we do

not require trace-class Q in our definition of the optimal compensator, even

though this compensator solves a precise optimization problem only when Q is

trace cl ass.

This paper is concerned primarily with how the finite dimensional compen-

sators converge to the infinite dimensional compensator, and the analysis of

this convergence requires only the theory of infinite dimensional Riccati

equations for deterministic optimal control problems and the corresponding

approximation theory. While the stochastic interpretation of the infinite

dimensional compensator and, in Section 8.2, of the finite dimensional estima-

tors should be motivational, nothing in the rest of the paper depends on a

stochastic formulation. We assume that the operators Q, R, _ ^and R are deter-

mined by some desiEn criteria. In mar_ engineering applications, determinis-

tic criteria such as the stability margin and robustness of the closed-loop

system, rather than a stochastic performance index and an assumed noise model,

A
govern the choice of Q, R, Q and _._]

7.2 Application to Structures

For the rest of the paper, E = VXH as in Section 2, and A and B are the

operators defined there.

The measurement operator C in (7.2) now must have the form
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C = [C 1 C2] ( 7.1 8)

where C1 e L(V,R p) and C 2 z L(H,R p). Hence, if we denote by (C(x,x)) i the I th

component of the p-vector C(x,x), for (x,x) • E, then there must exist Cli e V

and c2i e H such that

(C(x,x)) I = <Cll,X>v + <C2i,:> H, i = l,...,p. (7.19)

Also, the estimator gain operator F is giv,,n by

Fy P _i= _ ( ,oi)Yi$
i=l (7.20)

A A

"[Yl Y2''" -Vp ]T e R p, where the fu:_ e_ g_ fi and gifor Y

are elements of V and H, respectively.

A

For the optimal estimator gains, we e_n partition IX as

and use (7.15) and (7.19) to get

(7.21)

^ P #t 1 ^ A
fl = 7 (R-)ij( I_Olj + )1102j) ,

J=l (7.22a)

^gl = (_-l) ij ( Clj + I_2c2j) , i =

J=l

A
Now let us partition Q as in (4.34):

1,2,...,p.

(7.22b)
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A*

(7.23)

In the optimal control problem, we almost always have a nonzero Q0 because

this operator penalizes the generalized displacement. For the results in this

A

paper, Q0 can be nonzero in the observer problem, and, as in the control prob-

lem, some of the strongest convergence results for finite dimensional approxi-

mations can be proved only for coercive _. However, if the observer is to be

thought of as an optimal filter, then _ should be the covariance operator of

the noise that disturbs (2.1). In this case, _0 = 0 and _1 = 0.

78



8. Approximation of the Infinite Dimensional Estimator

8.i The Approximating Finite Dimensional _stimators

Here, the scheme for the approximatior of the flexible structure is that

in Section 4. We will construct on the sutspace E n an estimator that approxi-

mates the optimal infinite dimensional estimator of Section V, and this esti-

mator will produce an nth-order estimate _ : (_ Ax ofx n' n ) the infinite dimen-

sional state vector z = (x,x). In Section 9, the the nth-order compensator

that results from applying the nth approxination to the optimal control law

(in Section 4.2) to _ will approximate the optima/ infinite dimensional com-
n

pensator of Section 7.

Hypothesis _8.!. There exist a sequence Cn 8 L(En, RP) such that

{ICnPEn-C{I -+ 0 as n --} =

^ ^* = _ O, ;uch that
and a sequence Qn e L(En), Qn n >-

(8.1)

A

_nPEn --} Q strongly as n --> '_ .0 (8.2)

* C*) is stabilizable.
Hypothesis _8.2. For each n, the system (At, n

lar, any unstable modes of the system (Cn, %n) are observable. [3

In particu-

The nth observer, or nth e_timator, _ia

^A = An_ + Bn u + Fn(Y_CoU_ c n)Zn n (8.3)

A

where the estimator gain Fn is
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^ ^ '_-1
= _CnRF n ,

(8.4)

and % is the nonnegatlve selfadJolnt solution to the Rlccatl operator equa-

tl on

%< ^+ - _CnR Cn_ + Qn = O.

Hypothesis 8.2 implies that such a solution exists and is unique.

(8.5)

This representation of the nth estimator as a system on En, with the

estimator gain determined by the solution to a Riccati operator equation, is

necessary for showing how the sequence of finite dimensional estimators

approximate the infinite dimensional estimator. However, on-line computations

will be based on the equivalent differential equation

= An+ Bnu + F (y-CoU-C' )
(8.6)

where _(t) e R2n, An and B n are the matrix representations of the operators A
n

and B n, as in Section 4, and Cn is the matrix representation of C
n"

The 2nxp galn matrix _n is

_n = _I n w-n (cn)'I_R-1,

(8.7)

where wn is the 2n x 2n grammlan matrix in (4.33) and _ satisfies

An_]n + _n w-n (An)T W n + _ w-n(cn)_I_R-1cn_]n + _n = O,

(8.8)

A =with _n the matrix representation of _n" The relationship between z n

(_n,AXn) and _ is, of course,
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n A
A

Xn(t) = )- _i(t)e i
i=1 (8.9)

and

11 .=
(8.10)

• An T
Since the matrix representations of An and A n are and w-n(A n) W n, respec-

tively and the matrix representation of C" Is w-n(cn) T, (8.7) is the matrix
' n

representation of (8.4), and the 2n _2n Riccati matrix equation (8.8) is the

matrix representation of (8.5), with _ the matrix representation of _.

(Recall that W -n is the inverse of wn.)

As in the control problem, we do not s:,Ive the matrix representation of

the nth Riccati operator equation directly _cause the matrix representation

of a selfadJoint operator in general is not symmetric. In the duality between

the optimal control and estimator problems, (8.5) and (8.8) correspond to

(4.26) and (4.38), respectively. In (4.39), we defined the symmetric matrix

= Wn O n and then obtained the Riccatl eluatlon (4.40) to solve for _ •

We proceed in a similar fashion here, but with an interesting difference.

^ and _ and
Since % and _n are nonnegative selfadJoint operators on E n

_n are their matrix representations, the matrices W n _ and W_ n are nonnega-

tlve and symmetric. Hence, the matrices

= _W -n
(8.11)

and
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are nonnegative and symmetric.

(8.8) yields

_n = _(cn)T _-I

and

(8.12)

Substituting (8.11) and (8.12) into (8.7) and

An_ + _(An) T - _(cn) RT_-icn

(8.13)

+ = O,

(8.14)

the Rlccatl matrix equation to be solved numerically in the nth approximation

to the infinite dimensional estimator. In view of the relationship between

(8.5) and (8.8) and the relationship between (8.8) and (8.14), we see that

Hypothesis 8.1 guarantees the existence of a unique nonnegative symmetric

solution to (8.14).

To see the relationship between the matrices in (8.14) and the operators

in (8.5) more dearly -- and the difference between the current approximation

scheme and that used in Section 4.2 for the control problem -- suppose that we

^ ^ _n

take Qn = PEnQ_En • Let Q be defined as In (4.36) and (4.37) wlth Q0' QI' and

A

replaced by Q0" QI' and _2" Then

_n = w-n _n w-n.

(8.15)

For example, if Q in the control problem and _ in the estimator problem are

both equal to the identity, then the _n in (4.35) - (4.42) is W n and

_n = w-n. This may seem suspicious, but Subsection 8.2 should demonstrate

that we are solving the appropriate estimator problem here.

The only thing missing now for numerical implementation of the nth
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estimator, or observer, is to give Cn, the m_trix representation of Cn, expli-

citly. Wewrite

cn = [C_ C_] (8.16)

n and nwhere the p X n matrices C1 C2 are, res_,ectively, the matrix representa-

tions of the operators C1 and C2 in (7.18). We can cover virtually all appli-

n is the p-
in which case the iTM column of C1

cations by assuming Cn= CIEn,

n is the p-vector equal to C2e i.
vector equal to Cle i, and the i th oolumn of C2

W_ee_ h__ the _ se_ of equation_ _ e/_ imDlementatlon of

the nth t_ t__9__: For online comput_tion, the nth estimator, or

observer, is (8.6); the gain matrix _n is given by (8.13) and the solution to

the Riccati matrix equation (8.14). The matrices _Qn and Cn are defined as

abov e.

8.2 Stochastic Interpretation of the Approximating Estimators

As we have said, our approximation theory for the optimal estimator is

based on approximation of the infinite dimensional Riccati equation, whose

structure is the same for both control and estimator problems, and the sto-

chastic properties of the optimal estimator problem never enter our approxima-

tion theory. Furthermore, using only the deterministic setting above, we will

proceed, subsequently, to analyze the finite dimensional estimators and the

compensators based upon them. Nontheless, we should consider momentarily the

sequence of finite dimensional stochastic sstimation problems whose solutions

are given by the equations of the preceding subsection.

First, recall how the covariance operator of a Hilbert space-valued ran-
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dora variable is defined• The covariance operator of an E-valued random vari-

able _ is the operator Q for which

expected value {<z,_>E<_,_>E}

(See [BI, CA].)

= <Qz,_> E, z, _ e E.
(8.17)

A,

With Fn given by (8.4) and (8.$), (8.3) is the Kalman-Bucy filter for the

system

Zn = AnZn + BnU + ran'

(8.18)

Y = Cou + CnZn + toO'

(8.19)

A

where _n(t) is an En-Valued white noise process with covariance operator Qn

and too(t) is an RP-valued white noise process with oovariance operator
^

(matrix) R. Next, careful jinspection will show that the filter defined by

(8.6), (8.13) and (8.14) is the matrix representation of the filter defined by

(8.3), (8.4) and (8.$).

With zn and q related as in (4.1) and (4.4), (8.18) and (8.19) are

equivalent to the system

q = Anq + Bnu + V,

Y = Cou + cn_ + mO'

where (/(t) is the R2n-valued noise process related to _n(t) by

(8.20)

(8.21)
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n

_n(t) = )- ((/i(t)ei, (/i+n(t)el) •
i=l (8.22)

Certainly, a Kalman-Bucy filter for (8.20) _nd (8.21) has the form (8.6) with

the filter gain given by (8.13) and (8.14). This particular filter is the

matrix representation of the filter defined by (8.3), (8.4) and (8.5) if and

only if the matrix_ n defined by (8.12) is the oovarianee of the process (/(t).

Since _n is the matrix representation of _n' straightforward calculation using

(8.12) and (8.17) shows that the_ n in (8.1'I) is indeed the correct eovarianee

matrix.

Of course, if _n(t) and U(t) represent a physical disturbance to the

(2)(t)) and the first n elements
structure, then _n(t) must have the form (0,_ n

of (/(t) must be zero, but this is not necessary for our analysis.

The finite dimensional observers can be interpreted now as a sequence of

filters designed for the sequence of finite dimensional approximations to the

flexible structure, with the nth approximate system disturbed by the noise

A

process _n(t), whose oovariance operator i-_zQn" By Hypothesis 8.1, these

covariance operators converge to the operator _ of Section 7. If we have a

reliable model of a stationary, zero-mean _!_aussian disturbance for the struc-

ture, then we can take the covariance oper_<tor for this disturbance to be

and think of the infinite dimensional observer as the optimal estimator. But,

again, this interpretation is not necessar} + for the rest of our analysis.

8.3 The Approximating Functional Estimator Gains

The nth estimator gain operator in (8.4) has the same form as the infin-

ite dimensional estimator gain in (7.15) and (7.20). We have
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P #% A

Y = Z (fin, gin )yi
i--1

(8.23)

A

for y -- [Yl Y2 "'" Yp ]T e Rp, where the functional estimator gains fin and

A A

gin are elements of g n = Hn. The matrix F n in (8.7) and (8.13) is the matrix

^

representation of Fn, which means that, if we write

where the columns

I fl f2 ... _fPl

[_gl _g2 "'" _gPl

fi
, _gi e Rn, then

(8.24)

^ n fi

fin = )- _j ej, i = I..... p,
j=l

(8.25a)

^ n gi
gin = i _i e4 i = 1 .... ,p.

J=l _ _'
(8.25b)

"% A

For convergence analysis, it is useful to note that fin and gin are given

also by equations corresponding to (?.22). With the measurement operator C

written as in (7.19) and Cn = C{E , we have
n

^ P #% A

fin = Z (_-1) ij ( _v_nP"nClj + _nPHne2 j)'
j=l

(8.26a)

where

^ P _, ^

gin = )- (_-l)ij( ]_inPvncij + _nPHnC2j),
J=l

(8.26b)

(8.27)
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8.4 Convergence

New we will indicate the sense in which the finite dimensional

estlmators/observers approximate the infirff te dimensional estimator in Section

7. As we have said, implementation of the nth estimator is based on (8.6),

(8.13) and (8.14), but convergence analysi:_ is based on the equivalent system

(8.3), (8.4) and (8.5). The question then is hew the observer in (8.3), with

gain given by (8.4) and (8.5), converges t(, the observer in (7.3) with gain

given by (7.15) and (7.16).

Recall Hypothesis 8.1, and recall fret Section 4 that the approximations

to both the open-loop semigroup and Its adjoint converge strongly. Also,

recall that Hypothesis 8.2 guarantees a un:[que nonnegative selfadJolnt solu-

$

tion to the Riccatl equation (8.5) for ea_ n. Replacing A n and B n with A n

and C
n

in Theorems 5.1 and 5.3, we obtain

A

Theore_ 8.3_. i) If JJH n JJ is bounded uniformly in n, then the Riccati
A ^

algebraic equation (7.16) has a nonnegative selfadJoint solution II and OnPEn

converges weakly to _. ii) If there exist positive constants M and 8,

independent of n, such that

JJexp([An__[nCnR-1Cn]t)JJ < Me -_t . t __0,
- ( 8.2 S)

A A

then II _ I! is bounded uniformly in n, n n PEn converges strongly to II and

exp([An- C  -lCn t)PEn converges strongly to the  emigroup generated
___A.A- 1_by A-HC R C, the convergence uniform in t _ 0 iii) If _n is bounded away

A

from zero uniformly in n, then J_lJ being bounded uniformly In n guarantees

the existence of positive constants M and _ for which (8.28) holds for all n.
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The proof of the following theorem is practically identical to that of

Theorem 5.4.

Theorem _8.4. If Q is E-coercive and do = 0, then there is no nonnegative sel-

fadJoint solution of the Riccatl operator equation (7.16), and

A

II]Inll as n-+-. D
(8.29)

Our purpose for bothering to state this obvious dual result is to point out

the following question. Can Theorem 8.4 be modified to include the case where

A _ A

Q has the form (7.23) with QO = O, Q1 = 0 and Q2 coercive on H?

Next, we have the dual result to Theorem 5.6:

Theorem 8.5_ Suppose that A0 has an invarlant subspace V0 which is also Invari-

ant under the damping map AvIAD, that E0 = V0 X V0 is an observable subspace,

A
and that the restrictions of A0 and do(.,,) to V0 are both H-coercive. Also,

suppose that V0 has finite dimension no and that, for each n ! no in the

approximation scheme, the first nO ei's span V0 and the rest are orthogonal to

V0 in both V and H.

A A

i) Then (7.16) has nonnegative solution ]]r, and {I %{{

n, so that %PEn converges to _ weakly.in

is bounded uniformly

O_ Aii) If E0 and E (the E-orthogonal complement of _) are invariant under Q,

^

and if the E0-Part of the system (A,Q) is controllable, then the hypothesis of

Theorem 8.3 ii) holds.

Proof. The proof is practically identical to that of Theorem 5.6 with B

replaced by C . For ii), note that, when we partition A and _ as in (3.16),
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A

the finite dimensional system (Al1,_I) is controllable if and only if the

#% i

system (%1,A11) is observable. Pl

_8.6. Remarks 5.7 and 5.8 pertain to Theorem 8.5 as well as to Theorem

5.6; i.e., in most applications the theorem requires either that both A0 and

do be coercive (so that V0 = {0]) or that the natural mode shapes be the basis

vectors and the damping not couple the natm'al modes. It seems unlikely that

a finite number of observable rigid-body modes could change the nature of the

convergence, but they greatly complicate the proofs. For applications where

both rlgid-body displacement and rlgid-body velocity are measured, a result

analogous to Theorem 5.9 can be obtained, but we will not bother here because

it adds no significant insight and we cannot use it in the example in Sections

6 and I0. Also, see Remark i0.i. F]

ATheorem _8.7. If PEn converges strongly to IT, then

[[fin - fi[[V -->0 (8.30a)

[gin - giilH --_ 0, as m -_ a_, (8.30b)

where?iand_iarethefunctionalestlmatcrwinsin(7.20_and_n and_In

are the approximating functional gains in (8.25).

Proof. The result follows from (7.22) and (8.26).
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9. The Finite Dimensional Compensators and Realizable Closed-loop Systems

9.1 Closing the Loop

The nth compensator consists of the nth approximation to the optimal con-

trol law in Section 4, applied to the output of the nth estimator/observer in

Section 8; i.e., the feedback control

un = - Fn_ n

(9.1)

where

:

(recall (4.25)) and _n(t) is the solution to (8.3).

pensator can be written as

(9.2)

Equivalently, this com-

un = _ Fn_

(9.3)

where

Fn = R-1BnT_

(9.4)

(recall (4.43)) and the 2n-vector _(t) is the solution to (8.6)). On-line com-

putations will be based upon the latter representation, and the block diagram

in Figure 9.1 shows the realizable closed-loop system that results from the

nth compensator. We will refer to this system as the /!th f_ig__-/_Q_o_ system.
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z - Az + Su
Y = C0u + Cz

Control System

#_ = [An_BnF n + Sn(Coyn_cn )]_ + _ny

u = - Fn_
n

nth Cornpensa tor

Figure 9.1 nth Closed-loop System

This closed-loop system is equivalent to

m,n
Zn/ (9.5)

where the operator

^ D(A_0 n) = D(A)X En,
®,n = Fnc [An-BnF n + Fn Cn] ' (9.6)

generates the closed-loop semigroup S®,n(t ) on EXE n. The closed-loop

response produoed by the nth oompensator ....i.e., the response of the nth

closed-loop system -- aan be written then as

(9.7)
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Note that A has compact resolvent if and only if A does.cDP n

9.2 Convergence of the Closed-loop Systems

Now we will consider the sense in which the nth closed-loop system

approximates the optimal closed-loop system in Section 7 (Definition 7.3).

Recall from Sections 4.1 and 8.1 how the approximating open-loop semlgroups

Tn(-) and their adJolnts converge strongly and how the input operators Bn, the

measurement operators Cn and their respective adJoints converge in norm. Sec-

tions 5 and 8 have given sufficient conditions for the approximating control

and estimator gains to converge to the gains for the optimal infinite dimen-

sional compensator. In this section, we will assume

Hypothesis 9.1. As n ---_ ®,

[[FnPEn - F[ I-_ O,
(9.8)

(9.9)

R_ark_9.2. Of course, we are interested prlmarily in the case where the

A
A

gains F and F are the optimal I_G gains in (7.15) and (7.17) and Fn and Fn are

the corresponding approximations in Sections 4 and 8 (1. e.,(9.2) and (8.4)).

However, for the analysis of this section, we need only Hypothes_s 9.1 for

A A

some F • L(E, Rm), F s L(RP, E) and approximating sequences Fn and Fn. Any such

gain operators will yield closed-loop semIgroup generators A=,® in (7.9) and

A®, n in (9.6). []
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We denote the projection of E X E onto E _ E n by PEEn"

_T_T_T_T_T_T_T_T_T_9_.3_. For t __ O, S,n(t)PEE n converges strongly to S®,=(t), and the

convergence is uniform in t for t in bounded intervals.

Proof. This follows from the strong convergence of the open-loop semigroups

and the uniform norm convergence of the control and estimator gains. Q

We should expect at least Theorem 9.3, but we need more. We should

require, for example, that if $(t) is uniformly exponentially stable, then

S®,n(t) must be also for n sufficiently large. Although numerical results for

numerous examples with various kinds of damping and approximations suggest

that this is usually true, we have been unable to prove it in general. We do

have the result for the following important case.

Suppose that the basis vectors ej of the approximation scheme are the

natural modes of undamped free vibration and that the structural damping does

I
not couple the modes. Then, for each each n, En and En reduce the open-loop

semigroup T(t) and its generator A. For this case, we can extend A®, n to D(A)_

D(A) as

-sFnP nlA®'n = FnC _nComp} (9.10)

where

_nComp = [An-BnFn-_nCn]PEn + AID(A) N E_"
n (9.ii)

th
Note that En is the span of the modes not represented in the n compensator.

The operator A=, n generates a semigroup _=,n(t) on E _( E, E X En and
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{O}XEJ'reduce S%,n(t) and the restriction of S®,n(t) to E _ En is S®,n(t)n •
e_

Hence S®,n(t ) is uniformly exponentially stable if and only if both S_,n(t)

and the part of the open-loop system on E"L
n are uniformly exponentially stable.

Theorem 9.4. i) Suppose that the basis vectors of the approximation scheme

are the natural modes of undamped free vibration and that the structural damp-

ing does not couple the modes. Then S_,n(t) converges in norm to S_,_(t) p

uniformly in bounded t-intervals.

ii) If, additionally, S ,®(t) is uniformly exponentially stable, then S®,n(t)

is uniformly exponentially stable for n sufficiently large.

Proof. From (9.6), (9.10) and (9.11), we have

where

,_ [ 0 B[FnPEn-F] _
oo = ^ ^ An jA ,=-A_, n [F-F n] C

(9.12)

_,. /%

An = (BnFnPEn-BF) + (FnCnPEn-FC).

Therefore, IIA., -A.,nlI --> 0 as n-->=, and the theorem follows. O

(9.13)

This paper emphasizes using the convergence of the approximating control

A

and estimator gain operators Fn and Fn, and the convergence of the functional

gains that can be used to represent these operators, to determine the finite

dimensional compensator that will produce essentially optimal closed-loop per-

formance. However, close examination of the right sides of (9.12) and (9.13)

reveals another important convergence question. While the gain convergence in

(9.8) and (9.9) drives the off-diagonal blocks in (9.12) to zero, the norm

convergence of the approximating input and output operators also is essential
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in killing An. Expanding the two terms in this block yields

BnFnPEn- BF = Bn(FnPEn-F) + IBn-B)F, (9.14)

A _C m ^ A
FnCnPEn - = (Fn-F)CnPEn + F(CnPEn-C).

(9.15)

The second term on the right side of each of these equations represents,

respectively, control and observation spillover, which has been studied exten-

sively by Balas. Together, the control spi]lover and observation spillover

couple the modes modelled in the compensator with the modes not modelled in

the compensator. The spillover must go to zero -- as it does when B n and Cn

N

converge -- for A®,® - A®, n to go to zero.

We should ask then whether there exists a correlation between the con-

A

vergence of Fn and Fn and the elimination of spillover. The answer is yes if

no modes lie in the null space of the state weighting operator Q in the per-

formance index and if the assumed process noise, whose covariance operator is

A

Q, excites all modes, but this correlation is difficult to quantify. As we

discussed in Section 6.4, the two main factors that determine the convergence

rates of the gains are the Q-to-R ratio and the damping, neither of which

affects the convergence of B n and Cn. On the other hand, when either factor

(small Q/R or large damping) causes the gains to converge fast, it generally

A

also causes the magnitude of F and F to be relatively small, thereby reducing

the magnitude of the spillover terms in (9.].4) and (9.15). Also, as n

increases, the increasing frequencies of the truncated modes usually reduce

the coupling effect of spillover. This is well known, although it cannot be

seen from the equations here. In examples that we have worked, we have found

that when n is large enough to produce convergence of the control and

estimator gains, the effect of anY rsmainir_g spillover is negligible. But

this may not always be true, and spillover should be remembered.
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9.3 Convergence of the Compensator Transfer Functions

The transfer function of the nth compensator (shown in the bottom block

of Figure 9.1) is

In(S) = -Fn(SI -- [An-BnFn+_n(CoFn-Cn)]) F n,
(9.16)

which is an m X p matrix function of the complex variable s for each n, as is

the similar transfer function i(s) in (7.14) for the infinite dimensional com-

pensator. We continue to assume Hypothesis 9.1.

We will denote the resolvent set of [A-BF+_(CoF-C)] by

A

P ([A-BF+F (CoF-C) ] ).

Theorem 9._5. There exists a real number aI such that, if Re(s) > a1, then s 8

A

P([An-B n Fn+Fn(CoFn-Cn)]) for all n, and _n(S) converges to @(s), uniformly in

compact subsets of such s.

A

Proof. The operator [A-BF+F(CoF-C)] is obtained from a contraction semigroup

generator by perturbation with bounded operators, and the approximations to

the perturbing operators are bounded in n, by strong convergence. In view of

this, close examination of the basic approximation scheme in Section 4.1 will

show that there exists a bound of the form Mlexp(alt), independent of n, for

A

the semigroups generated by [An-B n Fn+Fn(CoFn-Cn)]. Also, these semigroups

converge strongly to the semlgroup generated by [A-BF+_(CoF-C)], according to

[@3, Theorem 6.6]. For Re(s) ) aI then, the resolvent operator in _n(S) con-

verges strongly to that in _(s), uniformly in compact s-subsets, by [KI, page

504, Theorem 2.16, and page 427, Theorem 1.2]. U]
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This result leaves much to be desired. For example, it does not guaran-

tee that any subset of the imaginary axis will lie in

A

p([An-BnFn+Fn(COF n- Cn)]) for sufficiently large n, even if all of the ima-
A

ginary axis lies in p([A-BF+F(CoF-C)]). As with the convergence of the

closed-loop systems, we can get more for certain important cases.

Re__k_9._6. If the open-loop semigroup T(,) (whose generator is A) is an ana-

lytic semigroup, then there exist real numbers a, @ and M, with @ and M posi-

^
{s: larg(s-a) l< + 8]

tire, such that p([A-BF+F(CoF-C)]) contains the sector

and for each s in this sector,

^ -i
II(sI-[A-BF+F(CoF-C)]) II _< M/Is-al

(9.17)

.Theorem 9.7. i) If the basis vectors of the approximation scheme are the

natural modes of undamped free vibration and the structural damping does not

couple the modes, then each s in p([A-BF+_(CoF-C)]) is in

p([An-BnFn+gn(CoFn-Cn)]) for n sufficiently large and _n(S) converges to _(s)

^

as n --> ® , uniformly in compact subsets of p([A-BF+F(CoF-C)] ). ii) If,

additionally, T(,) is an analytic semigroup, then _n(S) converges to @(s) uni-

formly in the sector described in Remark 9.6.

Proof. i) In this case, we have also

1̂
_n(S) = FnPEn(SI - _nComp)- F n,

where _nComp is the operator on D(A) defined by (9.11).

from (9.8) and (9.9) and the fact that _nComp converges in norm to

^

[A-BF+F(CoF-C)]. ii) The result follows from i) and a bound on

(sI-_nComp) -I for large Isl that is obtained from the Neumann series in view

(9.18)

The result follows
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of (9.17) and the uniform-norm convergence of Ancomp.

_Theorem 9.8. If A has compact resolvent, then _n(S) converges to _(s) for

^

each s e p([A-BF+F(CoF-C)]), uniformly in compact subsets.

Proof. As a result of Theorem 4.4, the resolvent operator in _n(S) converges

in norm to the resolvent operator in _(s) for sufficiently large real s.

After an artificial extension of An to En then, the present theorem follows

from [K1, pages 206-207, Theorem 2.25].
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i0. Closing the Loop in the Example

As in Definition 7.3, the optimal closed-loop system is formed with the

optimal infinite dimensional compensator, which consists of the optimal con-

trol law for the distributed model of the structure applied to the output of

an optimal infinite dimensional state estimator. This optimal control law is

the limit of the approximating finite dimensicnal control laws in Section 6.

In this section, we first approximate the infinite dimensional estimator, as

in Section 8, and then apply the approximating control laws in Section 6 to

the approximating finite dimensional estimator's to produce a sequence of fin-

ite dimensional compensators that approximate the optimal compensator.

I0.I The Estimator Problem

We ass,_ne that the only measurement is t]le rigid-body angle 0 and that

^

this measurement has zero-mean Gaussian white noise with variance R = 10-4 •

We model the process noise as a zero-mean Gau_sian white disturbance that has

a ,omponent distributed uniformly over the beam, as well as two concentrated

components that exert a force on the tip mass and a moment on the hub. For

this disturbance, the covariance operator Q has the form (7.23) with QO= O,

:0 and82: I

We construct the approximating estimators as in Section 8.1. The gain

for the nth estimator is given by (8.13) wit_ the solution to the Riccati

matrix equation (8.14). For the rigid-body _leasurement, the matrix Cn is

Cn = [1 0 0 0 ].
(10.1)
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According to (8.15), the matrix _n is

°.]11 =

M- n '

since W n is the matrix in (4.33).

matrix. )

el ement s.

(10.2)

(As always, M -n is the inverse of the mass

Recall from Section 6.3 that n = 2n e + 1 where ne is the number of

Our only use for the functional estimator gains is to measure the conver-

gence of the finite dimensional estimators to the optimal infinite dimensional

estimator. To see the convergence of the approximating estimator gains, we

compute the approximating functional estimator gains as in Section 8.3. Like

the functional control gains, the functional estimator gains have the form

9 = (af,¢f,_f) ,

(10.3a)

A

g = (ag,¢g,/3g) ,

and the corresponding approximations have the form

(10.3b)

A

fn = (afn'¢gn'l_gn) '

(10.4a)

A

gn = (agn'¢gn'lBgn) •

(10.4b)

Re__9_mgr__10.1 We cannot guarantee as much about convergence for the approximat-

ing estimators as we could for the approximating control problems in Section

6. Since the damping in this example does not couple the natural modes and

the rigld-body mode is observable, we would have Part i) of Theorem 8.5 if we

were using the natural mode shapes as basis vectors. Therefore, we know at
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least that a solution to the infinite dimensional Riccati equation (7.16)

exists and that the infinite dimensional estimator that we want to approximate

exists. The numerical results indicate that the solutions to the finite

dimensional Riccati equations are bounded in n and that the functional esti-

mator gains converge in norm. The rigld-body mode prevents our guaranteeing a

priori all the convergence that we want. If a torsional spring and damper

were attached to the hub in the current example, we would have coercive stiff-

ness and damping and Theorem 8.S ii) would g_larantee that the solutions to the

finite dimensional Riccatl equations converge strongly and that the functional

estimator gains converge in norm for the basis vectors used here. Also, see

Remark 6.2 and Remark 8.6. D

P f

For damping coefficient co = I0-4, Figures 10.1 and 10.2 show Cfn and Cgn' and

Tables 10.1 and 10.2 list the the scalars afn,ag n and _gn" Since ¢fn(O) =

p

¢'fn(O) = O, the convergence of ¢fn implies the convergence of _fn = Cfn (_);

as in the control problem, _fn is not an independent piece of information

about the estimator gains while, as far as our results go, _gn is. We main-

tain analogy with the control problem and l_st only _gn in the table.
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n
e afn Qgn _gn

2 5.0358 12.680 -1334.9
3 5.2514 13.789 -1455.4
4 5.3195 14.149 -1495.7
5 5.3478 14.300 -1512.2
8 5.3611 14.371 -1520.1

Table 10.1. Scalar Components of Functional Estimator Gains

Damping coefficient c0 = 10-4 ; estimator R = 10-4

number of elements ne = 2, 3, 4, 5, 8

ne "fn agn _gn

4 5.3195 14.149 -1495.7
6 5.3567 14.347 -1517.5
8 5.3611 14.371 -1520.1

10 5.3623 14.377 -1520.8

Table 10.2_. Scalar Components of Functional Estimator Gains

Damping coefficient c0 = 10-4; estimator R = 10-4

number of elements ne = 4, 6, 8, 10
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Figures 10.3a and 10.3b and Table i0.3 give the numerical results for the fin-

ite dimensional estimators when the structural damplng is zero. While Theorem

8.4 says that the solutions to the finite dimensional Riccati equations for

A

these estimators will not converge when the damping is zero and Q is coercive

on E, we have no result to predict the convergence for zero damping when _ is

^

not coercive (even though Q2 is coercive on H). From the numerical results

A

though, fn does not appear to converge.

ne afn mgn _gn

2 5.0'/30 12.868 -1354.4

3 5.3390 14.253 -1506.0

4 5.4417 14.806 -1568.0

5 5.4 894 15.067 -15 96.3

8 5.5398 15.345 -1627.2

10.3. Scalar Components of Functional Estimator Gains

Zero damping; estimator R = 10-4

number ne = 2, 3, 4, 5, 8
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10.2 Approximation of the Optimal Compensator

Finally, for the damping co = 10-4 , R = .05 in the control problem and R

= 10-4 in the estimator problem, we construct the finite dimensional compensa-

tor in Figure 9.1; i.e, for each n = 2n e + i, we apply the nth control law

represented by the functional gains in Figure 6.4 and Table 6.4 to the output

of the nth estimator represented by the functional gains in Figure 10.2 and
e

Table 10.2. As the number of elements increases, the transfer function in

(9.16) of the finite dimensional compensator converges to the transfer func-

tion in (7.14) of the optimal infinite dimen_,_ional compensator, as described

in Section 9.3. Theorem 9.5 and Remark 9.6 apply. Figure 10.4 shows the fre-

quency response (bode plots) of the finite dimensional compensators for 4, 6,

8 and i0 elements. The phase plot is for I0 elements only. These plots indi-

cate that the finite dimensional compensator for eight or more elements is

virtually identical to the optimal infinite flimensional compensator, as

predicted by the functional gain convergence in Figures 6.4 and i0.2.
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10.3 Comments on the Structure and Dimension of the

Impl em entabl e Cornpe nsa tor s

Though this paper does not address the problem of obtaining the lowest-

order compensator that closely approximates the infinite dimensional compensa-

tor, we should note that the compensators based on eight and ten elements here

are unnecessarily large because the finite element scheme that we chose is not

nearly the most efficient in terms of the dimension required for convergence.

(The dimension of the first-order differential equation in the compensator is

2(2he+l) .) We used cubic Hermite spllnes here to demonstrate that the finite

element scheme most often used to approximate beams in other engineering

applications can be used in approximating the optimal compensator. In [GS],

we compare the present scheme with one using cubic B-splines and one using the

natural mode shapes as basis vectors. The r_atural mode shapes yield the

fastest converging compensators, but the B-_plines are almost as good. The

only advantages of the Hermite splines result from the fact that the coding to

build the basic matrices (mass, stiffness, etc.) is simpler than for B-splines

and the fact that, before the Rlccati equations based on, say, ten natural

modes are solved, a much larger finite element approximation of the structure

must be used to get the ten modes accurately.

To understand the redundancy in the large finite dimensional compensators

here, it helps to consider the structure of the optimal compensator. It is

based on an infinite dimensional state estimator that has a representation of

each of the structure's modes. In the present example, the optimal compensa-

tor estimates and controls the the first si_ modes significantly, the next

three modes slightly, and virtually ignores the rest. This observation is
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based on the projections of the functional gains onto the natural modes and on

comparison of the open-loop and closed-loop eigenvalues. (See [GS] for more

detail, including the spectrum of closed-loop system -- which is stable--

obtained with the ten-element compensator here.) The infinite dimensional

compensator then has an infinite number of modes that contribute nothing to

the input-output map of the compensator. These inactive modes are just copies

of all the open-loop modes past the first nine. They can be truncated from

the compensator without affecting the closed-loop system response signifi-

cantly. The nunber of active modes in the compensator -- i.e., the modes that

contribute to the input-output map -- depends on the structural damping and

the Q's and R's in the LQG problem statement. (See the discussion in Section

6.4 about the effect of damping and control weighting on performance.)

The compensator computed here based on ten elements has 21 modes

(although we did not do the computations in modal coordinates). Nine of these

compensator modes are virtually identical to the nine active modes in the

infinite dimensional compensator, and the twelve inactive modes are approxima-

tions to the tenth through twenty-first open-loop modes of the structure. The

inactive modes result from the large number of elements needed to approximate

the active compensator modes accurately. Now that we essentially have the

optimal compensator in the ten- element compensator, we could truncate the

twelve inactive modes and implement a compensator with nine modes. And we

probably could reduce the compensator even further using an order reduction

method like balanced realizations.
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11. Conclusions

For the deterministic linear-quadratic optimal regulator problem for a

flexible structure with bounded input operator (the B0 in (2.1)), the approxi-

mation theory in Sections 4 and 5 is reasonably complete. The most important

extensions should be to the corresponding (w_ry difficult) problem with

unbounded input operator, for which there exists little approximation theory.

Because of the different kinds of boundary input operators, stiffness opera-

tors and structural damping, all of which must be considered in detail when B0

is unbounded, it seems unlikely that the appr,oximation theory for the

unbounded-input case can be made as complete as the theory here.

The convergence results in Section 8 fo_" the estimation problem are less

complete than those for the control problem _ecause rigid-body modes present

more technical difficulties for the proofs in the estimator case. However,

our analysis and numerical experience suggest that the difficulties only make

the proofs harder and that the convergence in the estimation problem is ident-

ical to the convergence in the control problem, and that controllable and

observable rigid-body modes make no qualitative difference in either problem.

Where we would most like substantial i_provement over the results of this

paper is in Section 9.2, which considers how the approximating closed-loop

systems obtained by controlling the distributed model of the structure with

the finite dimensional compensators converge to the optimal closed-loop sys-

tem, obtained with the infinite dimensional compensator. Theorem 9.4 gives us

what we want for problems where the damping does not couple the natural modes

of free vibration and the natural mode shapes are the basis vectors for the
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approximation scheme. In particular, this theorem says that, if the optimal

closed-loop system is uniformly exponentially stable, then so are the approxi-

mating closed-loop systems for sufficiently large order of approximation. We

have verified numerically the stability of the approximating close-loop sys-

tems for the example in Sections 6 and 10, where the basis vectors are not the

modes. This example and others have made us suspect that Theorem 9.4 is true

when the basis vectors satisfy Hypothesis 4.1 only and when the damping cou-

ples the modes.

Another possible approach to analyzing the convergence of the approximat-

ing closed-loop systems to the optimal closed-loop system is to use the

input-output description in frequency domain. Results like those in Section

9.3 are useful for this, although for the closed-loop stability we want, we

probably need the transfer functions of the finite dimensional compensators to

converge more uniformly on the compensator resolvent set than we have proved

here. In our example, Figure 10.4 indicates that these transfer functions

converge uniformly on the imaginary axis, but we have no theorem that guaran-

tees this.
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APPENDIX

Errata for [GI]

In the first paragraph of the proof of Theorem 2.1 on page

689 of [GI], the first sentence should be:

Ifa dissip_ive operator is invertible, its inverse is

dissipative.

At the beginning of the fifth line of the same paragraph, the

expression (_x+y) should be deleted the first time it occurs.

The next-to-last sentence of the paragraph should be:

Hence, if a densely defined maximal dissipative operator has

dense range, its inverse is maximal dissipative.

The theorem is correct as stated.

In the current paper, we use Theorem 2.1 of [GI] to conclude

that the operator _ defined in Section 2 is maximal dissipative (see

(2.10)-(2.12)) and that the operator _ in (2.16) has a unique maximal

dissipative extension.
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